



Module III. Vulnerability and adaptation From theory to practice

Case Study 3

An evaluation of the vulnerability of agriculture and adaptive strategies aimed at achieving food security in the Sahel:

The example of the Niayes in Senegal.

Moussa Seck and Moussa Na Abou (ENDA, Dakar, Senegal)



# **Content:**

- **1. Introduction**
- 2. The issues
- 3. Method and tools applied to the Niayes' situation
- 4. Lessons learned
- 5. Conclusions and prospects

# **1. Introduction**

**Agriculture in Senegal:** 

- > Employs 65 to 70% of the working population
- >Over 95% of production systems are in rural areas
- ➤Contributes only 20% to the national GDP
- Primarily rain-fed cultivation
- > Exposed to climate hazards, such as cyclical drought

# Aims of the Niayes case study

- To analyse the vulnerability and climatic risks that threaten agriculture and, partly, food security
- To propose adaptive alternatives that can be reproduced in other Sahelian countries

# The Niayes: Location, towns and road infrastructure



Source: www.crdi.ca/fr/ev-27906-201-1-DO\_TOPIC.html



# Environmental

# Socio-economic

# Legal, political and institutional

# **Environmental issues**



# Soils in the Niayes

 Raw mineral soils: low level or non-existence of humus-bearing horizons

• Unleached tropical ferrugineous soils occupy most of the Niayes region: poor in organic matter and subject to wind erosion and runoff

• Brown-red soils in the north-western part of Louga and south-east of Saint-Louis

• Vertisols located in the Sébikotane area (Bargny plateau) and the Somone - Tanma lake axis

• Halomorphic soils in the southern part of the Niayes (Dakar and Thiès regions) and in the Senegal River delta

• Pseudo gley mineral soils, very important to the Niayes, rich in organic matter such as vertisols: of high interest for agricultural production, especially market gardening

Source: http://ns.cse.sn/fao/senegal.htm, 2000

# Winds



Source: http://ns.cse.sn/fao/senegal.htm, 2000 (UNEP – UNESCO, 2003).

# **Cyclical drought**

#### In 20 years, Senegal has had 11 years of drought



# Climate variability: Contrasting trends in Senegal and the Niayes

Vegetation Wet season, 2000



Vegetation Dry season, 2000



Map showing NDVI (Normalized Difference Vegetation Index) trends

1986-1999



Sources: http://www.diawara.org/senegal\_vegetation.php http://lada.virtualcentre.org/eims/download.asp?pub\_id=92363

# **Socio-economic issues**

# Socio-economic profile of Senegal

| Agriculture                 | Agricultural land (2001) : 3<br>Population in the primary sec<br>Irrigated land (2001) : 76<br>Use of fertilisers (% farms)<br>Organic fertiliser :<br>Chemical fertiliser :<br>Organic/chemical fertiliser :<br>No fertiliser                                  | ,800,000 ha; 19%<br>ctor: 70%<br>000 ha; 2% of agricultural land<br>19%<br>16%<br>4%<br>: 61%                                                                                                                    |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Population<br>and<br>health | Rural population:Urban population (2003):Population (2025):Density (2000):Population below the poverty1994:2001:Babies born underweight(1998-2003): 18 %Children under the age of 5 m(1995-2003): 23 %Population with access to driRural population with access | 51.1%<br>48.9%<br>16,900,000 inhabitants<br>48 inhabitants per km <sup>2</sup><br>v line<br>57.9%<br>53.9%<br>moderately or seriously underweight<br>inking water (2002) : 72%<br>to drinking water (2002) : 54% |

# Socio-economic profile of the Niayes

Agricultural areas in the Dakar region: Louga, Thiès, Saint-Louis

Surface area: approx. 3,090 km<sup>2,</sup> 13,000 ha of which are irrigated for a length of 180 km and a width of 5 to 30 km (agricultural part).

• Arable land: 1% of approx. 36,000 ha.

 Agricultural production: 80% of the fruit and vegetables produced in Senegal - 77.32% of the activities in Louga region and 80% in Saint-Louis and Thiès regions

- Level of poverty in 1995: 69.14%
- **Public investment in market gardening:** 2.2% for 1.0 % of cultivated land between 1988 and 1995.

Sources: http://ns.cse.sn/fao/utilisationterre.htm http://www.univ-rouen.fr/droit-sceco-gestion/Recherche/CARE/Documents/PapierCabral27sept04.pdf http://mfgfrenchstage.forumone.com/files/15243\_3\_enda.pdf http://www.ch-hyeres.fr/chstlouis/article.php3?id\_article=25

# **Population evolution in the Niayes**



#### National growth rate: 2.55% in 2004

#### Growth rate in the Niayes: 3% in 2004

Source: http://www.indexmundi.com/g/\* Source: http://web.idrc.ca/en/ev-27906-201-1-DO\_TOPIC.html

# Legal, political and institutional issues

# Senegal is characterised by:

- A wide range of political tools and strategies for environmental management
- A wide range of institutions involved
- The embryonic aspect of climate change in environmental policy instruments

# Land-use problems

Land ownership: the land is owned by the State (National Domain Law)

Land-use change: to urban development in the best areas, or deforestation

Land management: under the responsibility of rural communities and no longer favours the use of land for agriculture

Hence a feeling of land insecurity in the rural environment, which discourages long-term investment.

1971-72 BUD Senegal the first major horticultural farm, was founded in the Niayes and was the result of a cooperation between the Senegalese Government and the BUD Dutch agroindustrial firm

# In the Niayes

Five years later, BUD Senegal, managed by expatriates, experienced its first crisis

> An administrative reorganisation set up a new structure on the same land, known as Sen-Prim and run by national managers for ten years before it went bankrupt, making way for Seproma

> > Seproma, run by former BUD Senegalese technicians, lasted for only one season

Source: M. SECK and M. M. NA ABOU; 2005.

In 1990, a group of former BUD Senegalese workers, in cooperation with NGOs and local companies, took up the challenge and prospered.

### Groups and / or institutions involved in the Niayes



Source: M. SECK and M. M. NA ABOU; 2005.

3. Method and tools used to analyse vulnerability and adaptation applied to the case of The Niayes

- The method
- > The tools

Applying the method with the appropriate tools

# 3.1 The method



Source: Winograd, 2004 adapted by M. M. NA Abou, 2005.

# 3.2 The tools

| Evaluation<br>Tools             | Vulnerability | Adaptation | Description of the main<br>applications                                                                               |  |  |
|---------------------------------|---------------|------------|-----------------------------------------------------------------------------------------------------------------------|--|--|
| 1. Institutional analysis       | X             |            | Identification of key groups and<br>the interactions that determine<br>how the institutions operate                   |  |  |
| 2. Brainstorming                | X             | X          | Construction of matrices and lists of ideas, knowledge and perceptions                                                |  |  |
| 3. Consultation of stakeholders | X             | Х          | Consultation of individuals or groups affected by the decisions and the process                                       |  |  |
| 4. Oral histories               | X             |            | Use of the knowledge provided by<br>the groups affected to construct<br>analogies of strategies and future<br>effects |  |  |
| 5. Expert judgment              |               | X          | Technical evaluation of specific problems in the field                                                                |  |  |
| 6. Vulnerability indicators     | X             |            | Compilation and mapping of data<br>and knowledge to construct multi-<br>scale/level indicators                        |  |  |

# The tools (cont.)

| Evaluation<br>Tool                                 | Vulnerability | Adaptation | Description of the main applications                                                          |  |  |
|----------------------------------------------------|---------------|------------|-----------------------------------------------------------------------------------------------|--|--|
| 7. Macro-economic models and cost-benefit analyses | X             | X          | Economic and social valorisation of the impacts, options and responses                        |  |  |
| 8. Vulnerability profiles                          | X             | X          | Mapping and analysis of<br>indicators for different groups,<br>regions, sectors               |  |  |
| 9. Cognitive mapping                               | X             | X          | Mapping the knowledge basis of stakeholders                                                   |  |  |
| 10. Risk analysis                                  | X             | X          | Introduction and analysis of uncertainty in decisions                                         |  |  |
| 11. Focus groups                                   | X             | X          | Selected groups of stakeholders<br>who analyse the options for<br>dealing with certain issues |  |  |

# 3.3 Applying the method with the appropriate tools

# **Step 1: Indication of the climatic risk**



Aim: To analyse the risk of drought Tools: Risk analysis (tool no. 10), oral histories (tool no. 4)

# In Senegal:

Eight of the ten driest years for the period 1904 - 1994 occurred between 1970 and 1986

A cycle of quasi-uninterrupted droughts hit the country: 1976, 1979, 1982, 1983, 1984 (record), 1985 and 1986 Aim: To analyse the risk of drought. Tools: Expert judgment (tool no. 5), brainstorming (tool no. 2), focus group (tool no. 11)

### This led to:

# The almost complete disappearance of vegetal cover

- Increased wind erosion
- > A drastic decrease in ground water levels
- Isohyets moving further south

Aim: To assess the damage to the environment & natural resources Tools: Expert judgment (tool no. 5), consultation of stakeholders (tool no. 3)



Aim: To evaluate the presence of wind gales in the Niayes Tools: Expert judgment (tool no. 5)

# Trade winds: Winds from the sea, blowing in a North-West to South-East direction during 7 to 8 months of the year

The « harmattan »: A continental, hot and dry South-East wind from the Sahara

#### Aim: To identify areas at high risk (drought and wind impacts) Tools: Vulnerability profile (tool no. 8), Expert judgment (tool no. 5)



Source: M. M. NA Abou, 2005 – Senegalese National Communication.

#### Aim: To show evidence of deforestation Tools: Photographs , Expert judgment (tool no. 5)



#### Deforestation



#### **Charcoal production**

Average national wood production : 3.5 million m<sup>3</sup>, with a 33% progression in the last ten years

Deforestation rate: approx. 30,000 ha per year

Source: http://www.un.org/esa/forests/pdf/national\_reports/unff5/senegal.pdf

Aim: To evaluate the risk of food insecurity in the Niayes Tools: Stakeholder consultations (tool no. 3), Focus groups (tool no. 11), Expert judgment (tool no. 5)

- Continuous drop in agricultural yields
- Gradual destruction of vegetal cover
- Soil deterioration due to wind and water erosion
- Increasingly harsh impacts of drought
- Farmers become poorer

# Aim: To show the impact of climate variability on the country 's GDP Tools: Modeling/simulation (tool no. 7)



# The bad climate conditions in 2002 led to a 3.3% fall in agriculture's share of the national GDP

Source: Ministry of the Economy and Finance, 2004.

# **Step 2: Evaluation of the vulnerability**



Aim: To show evidence of the rainfall reduction over the years Tools: Vulnerability indicators and mapping (tool no. 6), Vulnerability profiles (tool no. 8)



Source: National Meteorological Office.

Aim: To show evidence of the vulnerability of agriculture Tools: Vulnerability indicators (tool no. 6), Expert judgment (tool no. 5)

North of the country is totally affected by drought

1990 – 1994: agriculture highly vulnerable across nearly 40% of the country

➢ In 50 years, average annual rainfall in the Niayes has fallen from 500-700 mm to 200-400 mm

Aim: To show evidence of the reduction and delay in rainfall over the years Tools: Vulnerability indicators and mapping (tool no. 6), Vulnerability profiles (tool no. 8)



Source: http://medias.obs-mip.fr/emercase/Emercase/precipsen310702.html

Aim: To show evidence of the reduction and delay in rainfall over the years Tools: Vulnerability indicators and mapping (tool no. 6), Vulnerability profiles (tool no. 8)



Source: http://medias.obs-mip.fr/emercase/Emercase/precipsen310702.html

Aim: To show evidence of the vulnerability of agriculture to drought Tools: Vulnerability indicators (tool no. 6), Expert judgment (tool no. 5)

> Water: a limiting factor in all agricultural zones (the 31 July 2002 a rainfall cumulus was less than 300 mm)

> Over 90% of the country was in the same situation on 31 July 2001

> The Niayes 31 July 2002 rainfall cumulus was 0 to 50 mm compared to the average of 50 to 150 mm during the 1961-1990 period

Source: M. M. NA Abou, 2005.

Aim: To show evidence of the vulnerability of agriculture to drought Tools: Vulnerability indicators (tool no. 6), Expert judgment (tool no. 5)

#### **VULNERABILITY INDICES**

#### **BIOPHYSICAL VULNERABILITY**

- Diminution of the rainfall height (Isohyets moving southwards)
- Rainy season starts later
- Deterioration of natural resources (soils, vegetation, etc.)
- Droughts

#### SOCIO-ECONOMIC VULNERABILITY

- Decrease of the agricultural GDP
- Continuous decrease in yields
- Farmers becoming poorer

# **Step 3:** Adaptation options



# Aim: Defining the roles of the main stakeholders involved in identifying adaptation options

Tools: Stakeholder consultation (tool no. 3), Expert judgment (tool no. 5)



Aim: Review of previously implemented adaptation options Tool: Expert judgment (tool no. 5)

#### **PRODUCTION SYSTEMS PREVIOUSLY IMPLEMENTED**

#### **TRADITIONAL or "FIRST GENERATION" PRODUCTION SYSTEM**

Rain-fed system

Use of tools such as hoes, "hilaires", "dabas", etc.

#### "SECOND GENERATION" AGRICULTURAL PRODUCTION SYSTEMS SUPPORTED BY THE GOVERNMENT

- Irrigation
- Mechanisation
- Seed selection

#### **LIMITATIONS**

Lack of quickset hedges

 Agricultural production inversely proportional to carbon sequestration

The environment is not considered as a "factor of production"

# Aim: To analyse the perception of stakeholders concerning the failure of previously implemented options Tools: Brainstorming (tool no. 2), Focus groups (tool no. 11), Institutional analysis (tool no. 1)

# Government (national managers, technicians, workers)

Poor management

Laxity

Lack of qualified staff

#### NGOs

Initiatives not participative

Compartmentalised decisions

Approach not systemic

Cyclical droughts

Winds

Deforestation

Source: M. SECK and M. M. NA Abou, 2005.

#### **Experts**

Lack of modernisation

Poor management

Lack of monitoring

Failure to convey message

#### **Farmers**

Initiatives not participative

Compartmentalised decisions

Difficulty in gaining access to

land

Lack of loans

Cyclical droughts

Deforestation

#### Aim: To identify adaptation options Tools: Brainstorming (tool no. 2), Stakeholder consultation (tool no. 3)

#### Government (national managers, technicians, workers)

- Decentralisation
- Privatisation
- Food aid
- Training of agronomists

Modernisation of the sector

#### NGOs

- Participative approaches
- Systemic approach
- Promote irrigation
- Install wind-breaks

Source: M. M. NA Abou, 2005.

#### **Experts**

Modernise the agricultural

sector

- Better management of
- allocated funds
- Provide rigorous monitoring
- Raise awareness

#### **Farmers**

- Participative approaches
- Facilitate access to lands
- Grant loans
- Food aids
- Find a substitute for rain-fed

agriculture

Aim: Adaptation options in the Niayes: "Third-generation" production systems

Tool: Expert judgment (tool no. 5), Stakeholder consultation (tool no. 3)

# Supplement rain-fed agriculture with irrigation

Stop the gale wind damage to agricultural production

# Produce environment instead of consuming it

# Promote 4 fundamental parameters: Technical; Environmental; Economic and Social

Source: M. SECK and M. M. NA ABOU, 2005

## **Step 4: Implementing adaptation options**



Aim: To implement adaptation options in Senegal, roles of the various stakeholders

Tools: Focus groups (tool no. 11), Stakeholder consultation (tool no. 3), Expert judgment (tool no. 5)



#### Aim: To implement adaptation options in Senegal, potential for irrigation in Senegal Tools: Cognitive mapping (tool no. 9), Vulnerability profiles (tool no. 8), Expert judgment (tool no. 5)



Source: M. M. NA Abou, 2005 and http://ns.cse.sn/fao/utilisationterre.htm

#### Aim: To block gale winds Tools: Expert judgment (tool no. 5), Stakeholder consultation (tool no. 3)



Fast growing hedges

Source: M. SECK and M. M. NA ABOU, 2005.

Aim: To enhance the environment Tool: Expert judgment (tool no. 5)

> Functional configuration, wind-break: the nature and species of wind-break help to reduce evapo-transpiration of plants and fix larger quantities of carbon and organic matter in the soils.





Fast growing hedges around cultivated plots

Source: M. SECK and M. M. NA ABOU, 2005.

## **Step 5: Evaluation**



#### Aim: To assess adaptation Tools: Focus groups (tool no. 11), Stakeholder consultation (tool no. 3), Expert judgment (tool no. 5)



Source: M. SECK and M. NA ABOU; 2005.

Aim: To introduce adaptation options in Senegal Tools: Cognitive mapping (tool no. 9), Vulnerability profiles (tool no. 8), Stakeholder consultation (tool no. 3)



Cabbage: Sprinkler irrigation Source: M. SECK and M. NA ABOU; 2005. Aim: To show evidence of the impacts of adaptation Tools: Expert judgment (tool no. 5)

### Cultivated areas: 300,000 ha (projections)

Yields: Cherry tomatoes grown in the field:
120t per ha; Carrots, cabbages, potatoes: over
30t per ha

Production of fresh products (fruits and vegetables, meat, milk, ...): 6 million tonnes (projections), i.e. double the current food production in Senegal

### Potential direct and indirect jobs: 2 million (men and women)

Aims: To show evidence of the impacts of adaptation Tool: Photographs, Expert judgment (tool no. 5)



#### French beans and maize



Wind-break and farmland



#### Sweet corn



#### Cherry tomatoes irrigated by micro-drip

Aim: To evaluate the adaptation options Tool: Expert judgment (tool no. 5)

### Advantages/disadvantages of irrigation

## ✓ Irrigation helps:

- To significantly raise production
- To diversify production
- To improve farmers' incomes

### ✓ But:

- Water resources (underground and surface) have considerably decreased as a result of over-exploitation
- Soils are becoming increasingly saline.

#### Aim: To assess the economic costs/benefits of the adaptation options Tool: Stakeholder consultation (tool no. 3)

| Production<br>factors                                       | Soil preparation, Seeds, Fertilisers, Phytosanitary products, Labour (maintenance),<br>Labour (harvest), Energy (Electricity and Diesel), Maintenance and repairs, Nursery<br>(peat, containers, canvas), Planting wind-breaks |                 |                      |                      |                 |                   |                      |                      |
|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------|----------------------|-----------------|-------------------|----------------------|----------------------|
| Type of<br>crop                                             | French<br>beans                                                                                                                                                                                                                | Pepper          | Sweet<br>corn        | Chili<br>pepper      | Melon           | Cherry<br>tomatoe | Straw-<br>berries    | Gombo                |
| Costs per<br>ha (in<br>thousands<br>of CFAF)                | 2,300                                                                                                                                                                                                                          | 2,080           | 910                  | 2,630                | 2,180           | 7,100             | 2,100                | 2,080                |
| Value in<br>CFAF on<br>the<br>European<br>market in<br>2003 | 1,000 to<br>2,600                                                                                                                                                                                                              | 700 to<br>2,500 | 1,100<br>to<br>3,500 | 1,200<br>to<br>3,500 | 700 to<br>2,500 | 1,000 to<br>1,800 | 2,000<br>to<br>3,000 | 1,400<br>to<br>2,500 |

#### **NB:** Farmers are organised into EIGs for production, packaging and export

Source: M. SECK and M. NA ABOU; 2005.

Aim: To evaluate the options for their ability to enhance the environment

Tool: Expert judgment (Tool no. 5)

#### Advantages of reforestation via fast growing hedges

- ✓ The production of firewood (19 T of wood per ha) can significantly help to reduce deforestation and reduce energy dependence.
- Increased soil productivity with organic matter levels reaching as high as 6%.
- ✓ Mobile dunes threaten market gardening pools despite the planting of a green belt 180 km long, made up of filaos, to prevent wind erosion.
- ✓ Carbon sequestration may go as high as 15 T of C per ha (root and above-ground biomass in a 5-years old plot).
- ✓ The relatively low financial costs of sequestrating carbon (10 USD per T of carbon).

Source: CSE, 2003; M. SECK and M. M. NA ABOU, 2005; http://www2.essex.ac.uk/ces/Research Programmes/CESOccasionalPapers/CSEQ <sup>61</sup> PaperFINAL.pdf

# 4. Lessons learned

# Agriculture and natural resource management

Adapting the agricultural sector to climate variability means, in part, that rain-fed agriculture has to be "supplemented" by irrigated agriculture.

The 'produced' environment could/should be considered as a 'production factor' in the same way as seeds, inputs or production techniques.

# Target groups: Populations in Sébikotane

The reticence of local populations to agricultural innovation is explained by the failure of previously implemented adaptation strategies

The reproduction of a successful experiment should be accompanied by the strengthening of the population's capacity to implement and manage these new agricultural production systems

# 5. Conclusions and prospects

# Conclusions

If food security in Senegal partly requires agriculture to adapt to climate variability and change, the following is required:

Irrigation should be promoted

Environment must be taken into account as a 'production factor'

> Agricultural sector needs to be modernised

Traditional knowledge in agricultural production needs to be adapted

# **Prospects**



Senegal forms part of the Sub-saharan band known as the Sahel, and presents the same geo-climatic problems as the other countries in the region:

- Low rainfall
- Climate change/ variability
- Food insecurity

Source : H.G. Mensching, Desertifikation. Darmstadt, 1990. p. 55



68

1950 – 1959 decade: Mean seasonal rainfall total in the Sahel

http://amma.mediasfrance.org/france/formation/enseignements/amma2e1/doc/08sept03/266,9,Slide 9

### Towards a change of scale...

✓ Drought situation due to climate variability that has hit Senegal concerns the whole Sub-saharan region: the Sahel

✓ Can adaptation alternatives implemented in Senegal be applied to:

Mauritania, Mali, Burkina Faso, Niger, Chad, Sudan and Ethiopia, with a view to helping them move towards food security?