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Experiences From Mexico And South Africa

Now the geologists Thompson, Johnson, Jones and Ferguson state that 
our own layer has been ten thousand years forming. The geologists 
Herkimer, Hildebrand, Boggs and Walker all claim that our layer 
has been four hundred thousand years forming. Other geologists, 
just as reliable, maintain that our layer has been from one to two 
million years forming. Thus we have a concise and satisfactory idea 
of how long our layer has been growing and accumulating.

Mark Twain 
A Brace of Brief Lectures on Science (1871)

“
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5PREFACE

This report outlines approaches to quantify the uncertainty associated 
with national greenhouse-gas emission scenario projections. It does so by  
describing practical applications of those approaches in two countries – 
Mexico and South Africa.

The goal of the report is to promote uncertainty quantification, because 
quantifying uncertainty has the potential to foster more robust climate-change 
mitigation plans. To this end the report also summarises the rationale for 
quantifying uncertainty in greenhouse-gas emission scenario projections.

At present few, mainly G20, countries are conducting uncertainty quanti-
fications. Their efforts are typically restricted to comparing projections ob-
tained through different models. While valuable, the information provided 
by such comparisons tells only one part of the story: other, complementary 
approaches exist that remain under-utilised.

In any country, the larger the expenditure for climate change mitigation, 
the closer climate change plans will be scrutinised to ensure that they are 
robust to as many plausible future conditions as possible. Uncertainty quan-
tification is central for achieving this goal.

PREFACE
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This report summarises the approaches followed in two applied-research 
projects, the purpose of which was to quantify the uncertainty associated 
with national greenhouse-gas emission scenario projections. The projects 
were conducted in Mexico and South Africa. 

The projects, which were funded through development aid budgets, were 
part of a larger undertaking involving seven additional countries. The over-
all effort, dubbed Facilitating Implementation and Readiness for Mitigation 
(FIRM), ran from early 2012 until late 2015. Its primary goal was to sup-
port national level planning for climate change mitigation. Additional in-
formation is available online at: http://www.lowcarbondev-support.org/.

The work conducted in Mexico and South Africa had to meet two require-
ments: it had to be useful to the governments of these two countries and it 
had to be potentially relevant to the other seven countries participating in 
the FIRM project. The premise was that, while at present those seven coun-
tries may not be fully equipped to conduct similar work, they are likely to 
be in the near future; thus, learning about the experiences in Mexico and 
South Africa is a necessary first step towards assessing their usefulness in a 

PARTNERS
The work in Mexico was led by the National Institute of Ecolo-
gy and Climate Change, a governmental entity. It was funded 
by both the Danish International Development Agency and the 
French Development Agency.

The work in South Africa was led by the Energy Research Centre 
at the University of Cape Town. It was funded by the Danish Inter-
national Development Agency.

INTRODUCTION
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UNCERTAINTY
The Intergovernmental Panel on Climate Change defines uncer-
tainty as follows:

“An expression of the degree to which a value or relationship 
is unknown. Uncertainty can result from lack of information or 
from disagreement about what is known or even knowable. Un-
certainty may originate from many sources, such as quantifiable 
errors in the data, ambiguously defined concepts or terminolo-
gy, or uncertain projections of human behaviour. Uncertainty 
can therefore be represented by quantitative measures, for ex-
ample, a range of values calculated by various models, or by 
qualitative statements, for example, reflecting the judgment of a 
team of experts.”

domestic context and potentially replicating them later. During the course of 
the project, workshops were used to share with the seven countries the work 
conducted in Mexico and South Africa. This report complements the work-
shops and makes the information accessible to a much broader audience.

Both the Mexican and South African teams quantified the uncertainty as-
sociated with projections of drivers of greenhouse-gas emissions, which 
in turn can be used to estimate the uncertainty in projections of green-
house-gas emissions (Box 1). In Mexico, the work focused on projections 
of energy commodity prices and projections of gross domestic product 
growth rates. In South Africa, the variables chosen were: gross domes-
tic product growth rates, the contribution of the tertiary sector to gross 
domestic product formation, population growth, global energy commod-
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Box 1 |  DRIVERS, PROJECTIONS AND UNCERTAINTY
Drivers of greenhouse-gas emissions are factors that, directly or indirectly, cause 
emissions of greenhouse gases to rise. Examples of drivers include the burning of 
fossil fuels or low energy prices. Any developments that result in a growth trend 
for drivers of greenhouse-gas emissions will therefore spur a similar trend in green-
house-gas emissions themselves. For this reason, analyses of likely future trends in 
greenhouse-gas emission levels are generally based on an analysis of anticipated 
changes in drivers of those emissions. Similarly, to quantify the uncertainty associated 
with projections of greenhouse-gas emissions, analysts often proceed by first quanti-
fying the uncertainty surrounding projections of drivers of greenhouse-gas emissions.

ity prices, domestic coal prices, domestic gas prices, the cost of solar- 
powered electricity generation and the cost of nuclear-powered electri- 
city generation. In addition, the South African team tested two alternative 
modelling approaches, to determine the extent to which the approach 
chosen changed the results of the analysis.

Quantifying the uncertainty of scenario projections is warranted on at least 
three accounts. Firstly, it increases the ability of decision-makers to realis-
tically interpret the projections obtained. Secondly, it results in projections 
that are more defendable from a scientific viewpoint, compared to those 
obtained when uncertainty is not quantified. Thirdly, further to the previous 
point, it enhances the credibility of the projections, which is of importance 
in the context of international climate change negotiations. The following 
paragraphs explain these points.

REALISTIC INTERPRETATION. Analyses to quantify the uncertainty asso-
ciated with future developments around a parameter of interest typically 
result in a range of estimates. This contrasts with traditional approaches, 
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which only provide a ‘best estimate’. Using a range of estimates makes it 
possible to explore a wider span of plausible future developments asso-
ciated with changes in the parameter of interest: for example, expressing 
estimates of future car ownership rates as a range allows for a more nu-
anced analysis of future emissions from cars, compared to using a single 
‘best estimate’ of future car ownership rates. For this reason, uncertainty 
quantification increases the ability of decision-makers to interpret projec-
tions more realistically.

SCIENTIFIC SOUNDNESS. By its very nature, uncertainty quantification 
encompasses a thorough review of the factors affecting future develop-
ments in the parameter of interest. This review tends to be more compre-
hensive than the type of review that is conducted when uncertainty is not 
quantified. This is because, to quantify uncertainty, the analyst will often 
revisit prior assumptions, collect additional data and solicit the expertise 
of individuals who otherwise would not have been consulted. As a result, 
and if uncertainty quantification protocols are followed carefully, the more 
comprehensive review that such protocols require results in estimates that 
are more defendable from a scientific viewpoint.

ENHANCED CREDIBILITY. Projections of greenhouse-gas emissions are 
used for national planning and as input to international climate change ne-
gotiations. In spite of this, there is no requirement as to the quality standards 
that forecasting processes should meet, nor are there generally agreed 
‘good practice’ procedures. Against this background, a projection that 
comes with a quantification of uncertainty, and is transparent about its 
methods, signals that the government agency having commissioned it has 
made an attempt to voluntarily go beyond standard practices. This lends 
projections additional credibility, which is particularly important in the con-
text of international climate change negotiations, where trust among parties 
plays a key role in consensus building.
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UNCERTAINTY IN GREENHOUSE-GAS EMISSION 
SCENARIOS
Framing domestic climate change policies and national positions 
in global climate change negotiations requires the best possi-
ble information about likely future outcomes. Climate economics 
modelling is now routinely used to create projections of those 
outcomes, through greenhouse-gas emission scenarios.

Scenario development involves many choices, few of which have 
definitive right or wrong options. Choices regarding modelling 
assumptions and techniques will vary from one country to an- 
other. Yet, all choices are ultimately subject to the fundamental un-
certainties that underlie climate change and its interactions with 
economic and natural systems.

While only some types of uncertainty can be reduced, most can 
be quantified. At present, however, this is seldom done. Ignoring 
uncertainty leads to potentially misleading policy recommenda-
tions, which defeats the purpose for which scenarios of green-
house-gas emissions are prepared in the first place.

The report consists of two additional chapters. Chapter 2 summarises the 
approaches to uncertainty quantification followed in Mexico and South 
Africa in the context of the aforementioned applied-research projects. The 
description is organised around three main areas: uncertainty in model 
input data, uncertainty in model outputs and uncertainty in model structures. 
Chapter 3 provides concluding remarks.
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QUANTIFYING 
UNCERTAINTY IN 
GREENHOUSE-
GAS EMISSION 
SCENARIO 
PROJECTIONS

Uncertainty is ubiquitous: individuals, businesses and government agencies 
alike, all make decisions in the face of sometimes considerable uncertain-
ties. Sectors as diverse as aviation, defence and health, among others, 
have long been compelled to quantify the uncertainty associated with pos-
sible future developments in events of interest. Ignoring that a few of the 
airplanes scheduled to land in an airport are likely to experience delays, or 
pretending that it is possible to accurately predict the location, timing and 
scale of a health pandemic are clearly not working premises for - in these 
examples - the aviation and health sectors. Instead, decision-makers in 
these, and many other sectors, rely on projections the uncertainty of which 
has been quantified.

Generally, climate change analysts have been latecomers to this prac-
tice. Contrasting estimates produced through different – albeit, in princi-
ple, comparable – forecasting exercises is the main method that climate 
change analysts have used to characterise and quantify uncertainty. The 
Government of India’s initiative to simultaneously commission five forecasts 
of greenhouse-gas emissions in the country represents perhaps the most 
notable example of this.

In addition to running different models, climate change analysts have also 
sought to explore the uncertainty associated with projections of green-
house-gas emissions by changing key model parameters (while remaining 
within plausible ranges). For example, by running the model twice, one 
with a ‘pessimistic’ value for expected annual growth rates in gross domes-
tic product, and one with an ‘optimistic’ value for that same parameter, two 
projections of greenhouse-gas emissions can be obtained. The range of 
values defined by those two projections provides a crude measure of the 
uncertainty associated with the projections.

QUANTIFYING UNCERTAINTY
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Box 2 | TERMINOLOGY
Greenhouse-gas emission scenarios are routinely prepared to support planning for 
climate change mitigation. Drawing on these scenarios, climate change analysts 
use energy-economy models to obtain projections of greenhouse-gas emissions.

A model is a schematic (mathematical, computer-based) description of a system 
that accounts for the system’s known or inferred properties. In an energy-economy 
model, the system under consideration encompasses energy markets, the economy 
of the region being analysed and the environmental consequences associated with 
energy use in that region.

Model inputs are quantifiable parameters that a model uses to generate the projec-
tions of interest. Model inputs can be statistics describing trends in any one variable 
of relevance: for example, gasoline sold over a certain period, or the rate of a tax 
on gasoline. Model inputs can also be relationships between variables: for exam-
ple, the assumed impact that gasoline tax rates have on gasoline sales. The above 
mentioned “projections of interest” generated by the model are commonly referred 
to as model outputs.

Several schematic descriptions of the system of interest are possible. Each descrip-
tion comprises a specific set of logical relationships between parameters, which 
effectively correspond to the simplified representation of reality made by the model. 
Each description also reflects a number of methodological choices, for example, 
regarding the parameter that the model will solve for, or the interlinkages between 
sectors or countries. These two elements together are commonly referred to as the 
structure of the model.
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Other methods are available, which can support a more comprehensive 
analysis of uncertainty. Some of these methods are described in the follow-
ing paragraphs. In a setting where a computer model is used to obtain the 
projections, it is convenient to organise the description of these methods 
around three elements that are central to the modelling process: model 
inputs, model outputs and model structure (Box 2).

2.1 MODEL INPUTS

Several methods exist to estimate the uncertainty associated with likely 
future developments in model inputs. Most such methods rely on statistical 
inference techniques, with probabilistic econometric forecasts being per-
haps the best known examples. Structured expert elicitation constitutes a 
further option. This is the method that both the Mexican and South African 
teams used.

Structured expert elicitation is a well-established method for systematically 
consulting experts on uncertain issues. It is most often used to quantify 
ranges for poorly known parameters, but has also been used to develop 
qualitative issues such as definitions, assumptions or conceptual (causal) 
models. Different methods exist, which differ in the way expert assessments 
are elicited (through behavioural or mathematical approaches) and in the 
way expert assessments are combined, if they are (through equal weight-
ing or performance-based weighting).

The Mexican and South African teams conducted structured expert elicita-
tions for several variables (Chapter 1). For the remainder of this section, two 
such elicitations are described – targeting, in both cases, annual growth 
rates in gross domestic product. The Mexican and South African elicitations 
differ, in particular, in the way expert assessments were combined and the 
number of experts from whom assessments were elicited.

QUANTIFYING UNCERTAINTY
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STRUCTURED EXPERT ELICITATION
To be studied quantitatively, uncertainty must be provided with a 
mathematical representation, typically a distribution of probabi- 
lities. When model- and data-generated probability distributions 
are not available, subjective probability distributions, based on 
the assessment of leading experts, carefully synthesising the full 
range of current scientific theory and available evidence, can 
be used.

The various assessments from experts can be presented indivi- 
dually, as a set of diverse probability distributions, or they can 
be combined into one single probability distribution. The latter is 
often preferred, because it facilitates the use of the results. How- 
ever, when experts’ assessments diverge significantly, it is ad-
visable to report such disparate views separately, because the 
fraction of experts who provide a particular estimate is not neces-
sarily proportional to the level of accuracy of that estimate.

A range of methods can be used to combine individual assess-
ments into a single probability distribution. The simplest method 
involves giving each expert’s assessment equal weight in the sum-
mary estimate. Other methods involve valuing the assessment of 
some experts more than those of others, based on a measure of 
their performance. Performance is most often measured against 
so-called seed variables, where the actual values of these vari-
ables are unknown to the experts, but known to the analysts.

Both the outcome and the acceptability of the elicitation process 
depend on the selection of experts. For this reason, enlisting ex-
perts covering all points of view is of critical importance, as the 
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most accurate assessment may not coincide with the most popular 
view on the subject, or with the views of the most prestigious ex-
perts. Formal selection procedures exist, which can help ensure a 
balanced selection of experts. In some instances, experts are paid 
a fee, to compensate for the time they spend in the elicitation.

The experts’ views are elicited through a document that is of-
ten referred to as the elicitation protocol. Typically, the protocol 
describes the purpose of the elicitation, includes a summary of 
the scientific literature on the topic of interest, and lists the ques-
tions addressed to the experts. Some protocols also contain back-
ground information on both probability theory, and heuristics and 
biases in probability assessment.

Experts are introduced to the protocol by a specialist who, 
through direct interaction with them, clarifies procedural issues 
and ensures a common understanding among experts. Introduc-
tions are conducted individually or for a group of experts. For 
quantitative elicitations, these introductions can be used to offer 
experts training on ways to quantify their assessment of the topic 
of interest in terms of probabilities.

Mexico’s experience with quantifying the uncertainty in projections 
of gross domestic product growth rates

The Mexican team applied the so-called classical method of structured 
expert elicitation, which relies on performance-based weighting. Nine ex-
perts were engaged over a three-day elicitation workshop.

Trends in gross domestic product formation are determined by a large num-
ber of variables, which are interdependent in the sense that developments 
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ECONOMETRIC ANALYSIS
The scenarios were based on the outputs of a purpose-developed 
econometric model. In addition to helping identify dependencies 
among variables, the model provided estimates of likely future 
trends in annual gross domestic product growth rates. These esti-
mates were included in the elicitation protocol, stressing that they 
were provided for illustrative purposes only.

in one of those variables condition developments in most, or all, other vari-
ables. Eliciting expert opinions on all individual variables would have been 
impractical, in that it would have entailed a very extensive elicitation pro-
cess for which experts would have been unlikely to have time. In addition, it 
would have required conducting a complex dependency analysis post-hoc.

To avoid these pitfalls, the Mexican team constructed a series of scenarios 
of gross domestic product formation. By their very nature, the scenarios 
reflected all the dependencies mentioned above. Expert opinions were 
elicited on gross domestic product growth rates that the experts believed to 
be consistent with the different scenarios.

Six scenarios were built, focusing on the periods 2014-2020 and 2021-
2030. They reflected the impact on economic growth of three contrasting 
sets of macro-economic conditions: ‘pessimistic’ (low economic growth), 
‘neutral’ (medium economic growth) and ‘optimistic’ (high economic 
growth). The scenarios were structured around different plausible combi-
nations of values for interest rates, unemployment, inflation and economic 
growth in the United States (the latter is a key determinant of gross domes-
tic product growth in Mexico). The variable elicited was gross domestic  
product growth rates (the 5th, 50th and 95th percentiles).
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Examples of seed variables (used to quantify the experts’ performance) and 
variables of interest are provided for illustrative purposes:

• Seed variable: Quarterly growth rates of gross domestic product in 
Mexico have been below -5 percent in four instances between the first 
trimester of 1994 and the third trimester of 2013. What was the aver-
age value of the 28-day Mexican Federal Treasury Certificates (CETES) 
interest rate in these four trimesters? Indicate the 5th, 50th and 95th per-
centiles of your uncertainty distribution.

• Variable of interest: Consider a scenario in which, at the end of 2020, 
the Mexican (commercial) interest rate is between 3.5 and 4.0 per-
cent, the unemployment rate between 5.4 and 5.6 percent, the infla-
tion growth rate is between 3.0 and 3.3 percent, and growth rates of 
gross domestic product in the United States are between 2.8 and 3.3 
percent. Please provide your estimate of gross domestic product growth 
rates in Mexico in 2020.

South Africa’s experience with quantifying the uncertainty in pro-
jections of gross domestic product growth rates

The South African team relied on an equal weighting procedure. Two ex-
perts were engaged through individual, day-long workshops.

When compared to the Mexican team, the South African team used a 
simpler approach. This is partly because the South African team chose to 
elicit expert input on eight parameters, whereas the Mexican team focused 
only on two parameters (Chapter 1): the resource implications of imple-
menting the ‘complex’ approach for eight parameters would have made 
this option prohibitive.

QUANTIFYING UNCERTAINTY
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Instead of developing an econometric model to identify key determinants 
of economic growth and quantify their relative importance, the South Afri-
can team relied on a simple macroeconomic model. Similarly, instead of 
providing the experts with well-defined scenarios reflecting the results of 
the econometric analysis, the South African team encouraged each expert 
to envision different combinations of plausible future developments in key 
determinants of economic growth.

For example, South Africa’s current growth rate for gross domestic product 
stands at between 2 and 3.5  percent annually. The experts consulted 
were invited to reflect on the macroeconomic shifts that would be required 
to raise the annual rate to, say, 6 percent. The simple macroeconomic  
model used for the elicitation suggests that such a boost in economic growth 
would require an increase in capital of a magnitude that would entail an 
almost doubling of the current investment rate – something that is highly 
unlikely in the short term. During the discussions preceding the elicitation, 
experts were encouraged to examine this and similar generic questions.

SIMPLE MACROECONOMIC MODEL
The Cobb-Douglas production function is a mathemat-
ical expression that is widely used to represent the re-
lationship between a certain output and the inputs re-
quired to produce it. In its standard form, the function  
defines total production in terms of labour, capital and to-
tal factor productivity. In the context of the structured ex-
pert elicitation process for gross domestic product growth 
rates, the Cobb-Douglas production function provided  
a convenient alternative to more complex models, such as those 
used by the Mexican team.



19

For the elicitation itself, and independently from one another, each expert 
considered what macroeconomic changes might plausibly take place over 
three pre-defined future periods. For example, one of the experts felt that 
investment rates above 30 percent or expansions in the labour market (to 
a level that would be highly unlikely today) could not be ruled out for the 
period 2020-2035. Once they had completed their analysis for all three 
time periods, experts provided their probability distributions.

Both experts preferred to think of growth in gross domestic product in terms 
of a mean growth rate over three intervals (2015-2020, 2020-2035 and 
2035-2050), rather than annual growth rates in 2020, 2035 and 2050. 
Therefore, instead of annual estimates, their probability distributions pro- 
vided estimates of plausible mean values over each time interval. A couple 
of mathematical algorithms had to be applied, to convert those mean val-
ues into annual time series.

2.2 MODEL OUTPUTS

In the context of the applied-research projects described in this document, 
the uncertainty surrounding model inputs is quantified with the main purpose 
of supporting the quantification of the uncertainty associated with model 
outputs, since model outputs are of more direct interest to climate change 
analysts than model inputs. In this case, model outputs are projections of 
greenhouse-gas emissions obtained through energy-economy models.

The structured expert elicitation process that is used to quantify the uncer-
tainty associated with (selected) model inputs results in probability distribu-
tions for those model inputs (section 2.1). Such probability distributions can 
be used in energy-economy models to produce probability distributions for 
model outputs, thus quantifying some of the uncertainties associated with 
those model outputs.

QUANTIFYING UNCERTAINTY
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Most energy-economy models are run deterministically – that is, they use 
point-value estimates as input data and produce point-value projections as 
outputs. Therefore, to use probability distributions as input data and pro-
duce probability distributions as outputs, a deterministic model has to be 
adjusted. In some instances, model users may be able to undertake the rel-
evant modifications themselves. For example, the South African team did 
not require outside expertise to adjust the TIMES model. In other instances, 
such as was the case with the Mexican team, who ran a version of the 
LEAP model, outside expertise may be needed. Familiarity with the model, 
more than model complexity, determines whether model users themselves 
can undertake the relevant modifications to the model.

The modifications referred to above require two basic changes. The first 
change is relatively straightforward and entails adapting the input data 
interface, so that it can accept a mathematical expression (the probabil-
ity distribution), instead of a point-value estimate. The second change is 
more complex and involves linking the model to Monte Carlo simulation 
software. This makes it possible for the model to generate probability dis-
tributions as outputs.

PROBABILITY DISTRIBUTIONS
A probability distribution is a mathematical expression that, for a 
given event, links each possible outcome with the probability of 
the occurrence of that outcome. For example, a probability distri-
bution for average growth rates of gross domestic product in the 
period 2014-2020 assigns a probability to each of the possible 
values that the variable ‘average growth rate in gross domestic 
product’ may take over that period.
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MONTE CARLO SIMULATION
Monte Carlo simulation is a computerised mathematical tech-
nique used to estimate the probability of certain outcomes by 
running multiple trial runs, called simulations, with a model that 
can approximate those outcomes. Monte Carlo simulation results 
in probability distributions for the outcomes analysed. This kind 
of simulation is used in such widely disparate fields as finance, 
engineering and the environment, among many others, to reflect 
uncertainty, ambiguity and variability in projections of future val-
ues of variables of interest.

Consider a model that is run using point-value estimates as input 
data. In this situation, the model produces a point-value projec-
tion as output, which can be interpreted as the ‘best guess’ for 
the likely future value of the parameter under study. Consider 
now a situation in which the model is run twice, first with a max-
imum plausible value for one of the model inputs, and a second 
time with a minimum plausible value for that same model input. 
In this situation, the analyst obtains two model outputs – one 
associated with the ‘maximum value’ estimate and one associ-
ated with the ‘minimum value’ estimate. The range comprised 
between these two model outputs provides an indication of the 
uncertainty associated with the projection.

If not one, but several, model inputs are characterised through a 
maximum and a minimum estimate (as opposed to a ‘best guess’, 
point-value estimate), the model has to be run as many times as 
there are combinations of different estimates for those model 
inputs. If those model inputs are characterised as probability 
distributions (instead of a maximum and a minimum estimate), 

QUANTIFYING UNCERTAINTY



Experiences From Mexico And South Africa
UNCERTAINTY IN GREENHOUSE-GAS EMISSION SCENARIO PROJECTIONS 

22

the number of times that the model has to be run increases ex-
ponentially. Monte Carlo simulation software makes it possible 
to automate this process, thus simplifying the task of the analyst.

Using one of several well-established sampling algorithms, Mon-
te Carlo simulation software draws one value in the probability 
distribution that characterises the possible values that a given 
model input may take. Repeating this process for all model in-
puts characterised through probability distributions, a combina-
tion of values is obtained, with which the model is run. The soft-
ware records the resulting model output and proceeds to draw a 
second set of values for a second model run. The likelihood that 
a given value is drawn, is proportional to the probability that the 
distribution assigns to that value: a high-probability value in the 
probability distribution that characterises a given model input 
will be drawn more times than a low-probability value in that 
same distribution.

The process is repeated hundreds to thousands of times, until a 
large number of model outputs has been obtained. On the basis 
of the frequency with which model outputs take a given value, a 
probability distribution for model outputs can be constructed, thus 
making it possible to express model projections as probability 
distributions.
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2.3 MODEL STRUCTURE

In a model-based analysis, quantifying the uncertainty associated with 
model inputs makes it possible to quantify some of the uncertainties as-
sociated with model outputs, as illustrated in the previous sections. Not-
withstanding, because a model-based analysis obviously relies on one 
or several specific models, it is instructive to also analyse and, if possi-
ble, quantify the uncertainty associated with the structure of the model or  
models used.

Recall that a model is a schematic description of a system that accounts for 
the system’s known or inferred properties (Box 2). Several such descriptions 
are of course possible, ranging from introducing a small change in one 
model (for example, modifying a key model assumption) to using a com-
pletely different model. As a result, the task of analysing the uncertainty as-
sociated with the structure of the model will vary, depending on the extent 
to which the structure of the model is changed.

The South African team chose to modify the model in two different ways. 
Firstly, it changed the estimate for the global discount rate, one of the 
key model assumptions. Secondly, it switched its optimisation framework 
from perfect-foresight to limited-foresight, which represents one important  
methodological change.

Assumptions: changing the discount rate

The global discount rate is an important model assumption, in that it influ-
ences greatly the extent to which the model will select technologies with 
high upfront costs (such as nuclear- and renewable-energy powered elec-
tricity generation) versus technologies that have lower upfront costs, but 

QUANTIFYING UNCERTAINTY



Experiences From Mexico And South Africa
UNCERTAINTY IN GREENHOUSE-GAS EMISSION SCENARIO PROJECTIONS 

24

higher fuel costs over their entire lifetime. By default, the model used by the 
South African team sets the global discount rate to eight percent, in line 
with the rate used by governmental energy planners.

Complementing the model runs that used an eight percent discount rate, 
the South African team ran the model with rates of five and eleven percent. 
Simply put, the former promotes technologies with high upfront costs, while 
the latter promotes technologies with low upfront costs. The three sets of 
projections made it possible to explore, among other issues, the extent to 
which changes in the discount rate entail noticeable changes in the likely 
shares of coal and gas in electricity generation.

Methodology: changing the optimisation framework

In its default set up, the model run by the South African team operates under 
a perfect-foresight optimisation framework (Box 3). This is a methodological 
choice that, for some models, can be modified through the standard model 
interface. Switching to limited-foresight mode allowed the South African 
team to test the extent to which decisions made with incomplete information 
might differ from those made with complete (modelled) information about 
likely future trends in key drivers of greenhouse-gas emissions.

In this case, the model was run at ten-year intervals with a five-year over-
lap. This means that the model solved for a ten-year period and, five years 
into that period, it solved for the following ten-year period, until 2050. 
The results obtained through the perfect- and limited-foresight modes were 
very similar. This was expected, because the main sources of discrepancy 
could have been large commodity price fluctuations and policy interven-
tions resulting in marked price changes, such as a carbon tax, which were 
not considered.
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Box 3 | OPTIMISATION FRAMEWORK
The South African team ran a cost-optimisation model: the model solved for the 
combination of technologies that have the lowest (discounted) cost, while meeting 
certain energy demand requirements, pollutant emission restrictions, and resource 
and infrastructure constraints. As with most cost-optimisation models, it ran in per-
fect-foresight mode. In this mode, estimates regarding the likely future values of, for 
example, commodity and technology prices are incorporated in the optimisation 
decision.

In reality, decision-makers base their choices on the limited knowledge available to 
them at the time of making those choices. Some aspects of these decisions will be 
irreversible – that is, the decisions they make at one point in time will affect subse-
quent related decisions, notably by precluding certain courses of action.

Running the model in limited- (or myopic-) foresight mode makes it possible to  
mimic the conditions under which decision-makers actually operate. In this mode, 
the model breaks down the total time horizon considered in the analysis and solves 
sequentially for each individual portion. This means that, when solving for a given 
portion, the model only takes into account the results from the previous portion or 
portions. This makes it possible to study, for example, the impacts on the system of 
unforeseeable price shocks.

QUANTIFYING UNCERTAINTY



Experiences From Mexico And South Africa
UNCERTAINTY IN GREENHOUSE-GAS EMISSION SCENARIO PROJECTIONS 
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CONCLUDING 
REMARKS

In recent years both the government of Mexico and the government of 
South Africa have taken steps toward assessing the uncertainty around of-
ficial greenhouse-gas emission scenario projections. The methods that they 
use are somewhat rudimentary, as highlighted by the following examples, 
which, for illustrative purposes, refer to reference scenario projections:

• South Africa calculated the discrepancy between official greenhouse-gas 
inventory data for the base year and model projections for that year, 
and propagated that difference through the projections as an annual 
forecasting error. The resulting uncertainty range is rather large (about 
1,000 Mt CO2e in 2050).

• Over the past decade Mexico has developed several reference scenario 
projections. Between government and academia, at least eight forecasts 
have been produced, with projections ranging from 790 Mt CO2e to 
1,260 Mt CO2e in 2050. The range between these two estimates pro-
vides an indication of the uncertainty in the projections. A further study, 
commissioned by a coalition of Mexican multinational companies, pro-
duced an estimate that is much higher (2,940 Mt CO2e in 2050), thus 
expanding significantly the above uncertainty range.

Using error propagation equations and comparing the results of several 
studies are both valid methods for exploring the uncertainty around green-
house-gas emission scenario projections. Notwithstanding, more advanced 
tools exist that can complement these and other simple methods. To the ex-
tent that projections enjoy some credibility among those who use them, the 
uncertainty around the projections should be quantified to the best of our 
abilities, rather than using sub-optimal methods only. Failure to do so calls 
into question the usefulness and, by extension, credibility of the projections.

Cost deserves particular consideration, as preparing detailed green-
house-gas emission scenario projections is very expensive. Researchers at 
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the University of Cape Town estimate that “it took two senior researchers, 
together with several other […] staff members, all new to [the energy- 
economy model being used], a period of more than a year to complete 
the model with some ad-hoc assistance from international researchers”. For 
certain models, such as the model referred to in this example, data col-
lection adds significantly to the financial and, in particular, staff-time costs. 
Given the value that uncertainty quantification adds to the projections, and 
since the cost of uncertainty quantification is relatively modest compared 
to the cost of producing the projections, incurring the extra cost associated 
with uncertainty quantification seems more than warranted.

PRACTICAL APPLICATION

In Mexico, the results of the work have been used as input to the 
analysis underlying the country’s ‘intended nationally determined 
contribution’, submitted in early 2015 to the United Nations 
Framework Convention on Climate Change. In addition, the re-
sults of the work are also being used by the ministry of energy, in 
the context of the preparation of a reference scenario for energy 
efficiency in the country.

Not least, the members of the Mexican team state that, beyond 
the results themselves, the process of uncertainty quantification 
has given them an appreciation for the in-depth analysis of emis-
sion drivers associated with that process, as well as for the useful-
ness of expressing projections in the form of probability distribu-
tions. Analysts outside government have embraced the approach 
and use it in their work.

CONCLUDING REMARKS








