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Abstract* 

This paper proposes and estimates a default risk model for agricultural lenders 
that explicitly accounts for two risks that are endemic to agricultural activities: 
commodity price volatility and climate. The results indicate that both factors 
are relevant in explaining the occurrence of default in the portfolio of a rural 
bank. In addition, the paper illustrates how to integrate the default risk model 
into standard techniques of portfolio credit risk modeling. The portfolio credit 
risk model provides a quantitative tool to estimate the loss distribution and the 
economic capital for a rural bank. The estimated parameters of the default risk 
model, along with scenarios for the evolution of the risk factors, are used to 
construct stress tests on the portfolio of a rural bank. These stress tests 
indicate that climate factors have a larger effect on economic capital than 
commodity price volatility.  
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1. Introduction 

Quantitative risk management has become increasingly important for financial institutions 

ever since the publication of Basel II in 2004. Rural banks have not been exempt from this 

process, whether at their own initiative or required by the regulator. Some of these 

institutions receive considerable government support to enable them to provide loan 

opportunities to economic sectors considered too risky for most financial intermediaries. 

Given their significant specialization, rural banks have a smaller margin to diversify risk in 

their portfolios. They must also manage risks endemic to agricultural activities, including: (i) 

production risk (e.g., climate, disease, pests, technological change, and natural resource 

management); (ii) market risk (e.g., commodity price volatility, production factor price 

volatility, and uncertainty in the supply chain); and (iii) regulatory risk (e.g., changing 

policies, subsidies, and sanitary requirements).  

 Two underlying elements complicate the picture for rural banks. First, the agricultural 

sector is an important economic sector (especially in developing countries), a source of 

employment, and critical in guaranteeing food security for the population. Second, volatility 

in the agricultural sector is expected to increase in the coming decades (Gilbert and Morgan, 

2010; Schaffnit-Chatterjee, 2010;). According to some analysts (Khan and Zaks, 2009), 

production risks are expected to increase due to climate change and globalization. 

Management of such risks, endemic to agricultural activities, will require multiple strategies 

and new participants apart from the government, which has been the primary source of risk 

coverage, especially in developing countries. From the financial standpoint, there is growing 

interest in the use of financial derivatives and insurance (Geman, 2005; Hess et al., 2004; 

Larson et al., 2004; OECD, 2011; Schaffnit-Chatterjee, 2010). However, in order to 

determine the most appropriate design of financial instruments, quantitative tools are 

desperately needed.  

 The techniques and the academic and empirical literature on portfolio credit risk 

modeling have evolved significantly in the last ten years. The implementation of internal 

models has given financial institutions the opportunity to calibrate their risk weightings in a 

more balanced and realistic matter. One important development is the mapping between 

prudential capital, the unexpected loss function, and elusive risk factors (de Servigny and 

Renault, 2004). In order to implement internal models and quantify the capital charge on their 

exposure, financial entities need to build portfolio credit risk models. For a rural bank, this is 

an important challenge. However, as distinct from international banks, the challenge is not so 
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much mapping the complex interdependencies between their exposures, but rather the 

multiple risk factors that they face.  

A parsimonious way of introducing risk factors into the portfolio model is to build a 

multi-factor model to explain default risk. Factor models are common in finance (Fama and 

French, 1993; Ross, 1976) and credit risk management (Demey and Roget, 2004; Gordy, 

2000).  

 The literature on risk management for agricultural lending is scarce. Behrens and 

Pederson (2007), Escalante et al. (2004), and Gloy et al. (2005) analyze rating transition 

matrices on agricultural loan portfolios, and their results are not particularly different from 

what is observed in non-agricultural portfolios: macroeconomic factors are important in 

explaining credit migrations (farm-level factors are not significant), small and younger farms 

have more unstable ratings and downgrade momentum.1 Katchova and Barry (2005) use 

farm association data to implement two commercial structural credit risk portfolio models: 

CreditMetrics and KMV. Both models are driven by a one-factor model representing the 

conditions of the average farm. Their results show that the probability of default (over 

one-year horizon) for agricultural lenders varies substantially depending on their ratings from 

0  𝑝𝑒𝑟𝑐𝑒𝑛𝑡 the highest rating to 96  𝑝𝑒𝑟𝑐𝑒𝑛𝑡 for the lowest. Pederson and Zech (2009) 

propose a modified version of the CreditRisk+ approach for agricultural lenders. In their 

model they incorporate a proxy for the economic cycle of the agricultural sector.  

 The objective of this document is to build a portfolio credit risk model for a rural 

bank that is able to account for two specific risk factors that are relevant (and so far 

unexplored) for an agricultural loan portfolio: commodity price volatility and climate effects. 

In order to incorporate such effects, in a standard portfolio credit risk model, we specify and 

estimate a default risk model that incorporates price volatility and climate factors as 

determinants of the number of defaults in an agricultural portfolio. Information is used from 

the largest agricultural lender in Colombia, and the portfolio is organized into homogenous 

risk groups determined by the produce or crop and the zone of production. 

  We find significant heterogeneity in the occurrence of default across crops and zones 

of production within the same produce. This heterogeneity in part helps to find economically 

and statistically significant effects of both commodity price volatility and climate effects on 

the probability of default. We use the estimated default probability model to estimate 

conditional default probabilities. These probabilities can be used in a portfolio credit risk 
                                                
1 Downgrade momentum is the situation where recently downgraded obligors are at an increasing risk of 
experiencing further downgrades. 



 4 

model to derive simulated loss distributions and quantify economic capital. Different versions 

of the estimated conditional default probabilities (estimated at different realizations of the 

risk factors) can be used to establish a baseline of economic capital as well as stressed 

estimates of economic capital. The results from simulating the evolution of the loan portfolio 

indicate that climate effects are more important than commodity price volatility. The results 

also indirectly underscore the importance of using counterparty risk mitigation schemes (such 

as insurance) to reduce losses in the event of default, which does not seem to be a rare event 

in agricultural portfolios.  

 The document is organized as follows: Section 2 describes the rural portfolio and 

discusses the relevant risk factors. Section 3 presents the structural credit risk model based on 

the mapping of the risk factors. Section 4 introduces a statistical model of default risk and 

discusses the estimation results. Section 5 explains the design of the credit risk portfolio 

model used to simulate the losses of the rural portfolio. Section 6 presents the baseline results 

on the estimation of the loss distribution and the economic capital. Section 7 discusses the 

results of a series of stress tests based on scenarios of changing macroeconomic, climate, and 

price conditions. Section 8 concludes.  

2. Risk Factors in Agricultural Projects 

The first step in the development of a portfolio credit risk model for rural banks is to 

understand how the exposures (i.e., loans) within the portfolio are organized, specifically, 

how these exposures are related to a set of risk factors that can be quantified and that will be 

the driving force behind the credit quality of such exposures. For a rural bank, the loan is tied 

to its purpose, that is, to provide financial capital to a rural project: a particular crop 

(produce), the acquisition of farm equipment, or land improvement. The loan is also related 

to the geographic area where the project will be carried out (zone of production). 

 In risk management, an important concept that helps in envisaging the linkages 

between exposures and risk factors is the notion of homogenous risk groups. A homogenous 

risk group is a set of units (e.g., loans) that, because of their common and identifiable 

characteristics, are exposed to similar risk factors. Therefore, in order to map exposures to 

the set of risk factors, the loans must be grouped within these homogenous risk groups. Since 

the subject of interest is identifying how commodity price volatility and climate effects affect 

the quality of the agricultural loan portfolio, there will be two sets of homogenous risk 

groups: one based on produce and another based on zone of production. Table 1 presents the 



 5 

homogenous risk groups that we identified from the loan portfolio (Figures 1 and 2), with 17 

crops and 8 geographical zones of production. The latter are organized according to the 

altitude (distance above sea level) of the region where the loan was granted. The grouping of 

loans according to homogenous risk groups represents around 60 percent of the loan book; 

the remaining part of the loan book cannot be classified into viable risk groups. 

 

Table 1: Homogenous Risk Groups Based on Product and Geographical Zones of 
Production Classification of the Portfolio 
 

Produce Code Zone 
Cotton Cot 0-50 
Rice Ric 51-100 
Chicken Chi 101-500 
Bananas Ban 501-1200 
Forrest For 1201-1800 
Cocoa Coc 1801-2200 
Coffee Cof 2201-3000 
Sugar Sug >3000 
Rubber Rub 

 Flowers Flo 
 Beef Bee 
 Corn Cor 
 Palm Oil Pal 
 Pottato Pot 
 Plantain Pla 
 Pork Por 
 Tabaco Tab   

 
Source: Authors’ elaboration. 
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Figure 1: Distribution of the Loan Portfolio across Produce and Based on the Average 
Historical Value of Exposures 

 
Source: Authors’ elaboration. 

 

Figure 2: Distribution of the Loan Portfolio across Zones of Production (altitude) and 
Based on the Average Historical Value of Exposures 

 
Source: Authors’ elaboration. 
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Even though the notion homogenous risk groups implies different ex-ante risk 

behavior across the groups, shocks that are common to the different groups cannot be ruled 

out. This is precisely what we find when we look at the time-varying hazard rates across 

groups. Figure 3 shows the evolution of such rates for some products and zones of 

production: coffee and beef, less than 50 meters and 1201 to 1800 meters. Similar patterns 

are observed across the time series, peaking around 2009 and mid-2010, which implies that 

there is a common systemic factor. Similarities also surface across the two risk groups, 

meaning that there are some factors that might be local to some groups but not entirely 

idiosyncratic. The hazard rates are generally larger than zero; therefore, default is not such an 

uncommon event as one might expect (or as observed in other types of credit data (Koopman 

et al., 2008). 

 

Figure 3: Hazard Rates for Selected Products and Zones in the Portfolio (monthly data 
for 2005–12) 

 

Source: Authors’ elaboration. 

 

 After determining the risk groups, the risk factors of the rural projects need to be 

mapped to each of these paired exposures (produce and zone of production) within the 

portfolio. Figure 4 presents the main risk factors of rural projects and how they will be 

classified within the default risk model. This risk map is similar to the mapping of risk 

factors of commercial portfolio credit risk models (G-Corr of Moody's KMV, Portfolio 
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Tracker of Standard & Poor's and Creditmetrics). The purpose of such maps is not only to 

identify the main risk factors but also to depict the linkages between the elements of the 

portfolio. The map indicates a set of common risk factors, such as macroeconomic conditions 

or producer prices (captured by annual variations in the agricultural producer price index) 

and the produce- or zone-specific observed risk factors associated with commodity price 

volatility and climate effects (temperature and rainfall). The statistical model also allows 

unobserved non-time-varying risk factors (produce- and zone-specific intercepts in the linear 

model) to be estimated.  

 

Figure 4: Rural Project: Hierarchy of Risk Factors 

	  
	  

Source: Authors’ elaboration. 

 

 Commodity price uncertainty is one of the greatest concerns for agricultural 

producers. The difference between the price at the start of the project and at the end is an 

important source of uncertainty; therefore, price volatility (in the form of market risk) is an 

issue. We introduce commodity prices as a factor that drives creditworthiness, but since we 

are interested in the uncertainty that they transmit to agricultural projects, we measure such 

uncertainty in the form of volatility of the return process. The challenge is that volatility is a 

latent variable; therefore, a statistical model is needed to measure (filter out) the 

instantaneous volatility of the commodity price process. We use the exponential weighted 
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moving average model (EWMA) because it provides a simple method to measure the 

instantaneous volatility of the commodity price process. The moving average is estimated 

over a period of six months on the squared monthly returns, and the exponential weight, λ, is 

set to 0.94, which is standard in the literature. Figure 5 presents an example of the time series 

evolution of the estimated volatilities for some of the commodity price data for the crops in 

the portfolio. We observe that cotton prices are more volatile than coffee or tobacco. Cotton 

went through a period of important price variation at the end of 2011. Some other crops that 

show similar spikes are forest products (lumber) and potatoes (more than one spike in the 

sample). 

 
Figure 5: Estimated Volatilities for Cotton, Bananas, Coffee, and Tobacco (monthly data 
for 2002–12) 
 

	  
Source: Authors’ elaboration. 

Of similar importance in terms of agricultural production risk is climate risk. 

Therefore, we also consider it a determinant of creditworthiness. Small, unexpected changes 

in climate-related factors (temperature, rainfall, sunlight, and humidity, among others) can 

have important consequences for crop yields and, more importantly, for the success or failure 

of agricultural projects. Climate information is frequently collected from different climate 

stations around the country. We use two climate risk factors, based on the following climate 

information: average (over daily temperature readings) monthly temperature and 

precipitation, and average (over daily 24 hour readings) monthly precipitation.  
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 Figures 6 and 7 present the time series of temperature and precipitation aligned with 

the loan classification based on altitude groups. We observe some stable cyclical patterns 

with respect to temperature. In contrast, precipitation does not show a stable pattern; 

specifically, there was a sharp increase in precipitation during 2010 and 2011 in most zones 

of production. To facilitate the interpretation of the marginal climate effects on the statistical 

model, we transform the temperature and precipitation data into standard deviations from the 

monthly historical median measure. This transformation has two advantages: first, it 

preserves any seasonal patterns in the time series, and second, the use of the median reduces 

the contamination effect of outlying observations, specifically the rainfall data. In the 

estimation of the model, we also consider lagged measures of rainfall and temperature in 

order to account for the crop cycle. Therefore, we consider 6 month, 12 month and 48 month 

lags and choose the best performance of the lagged versions of the climate data. 

 

Figure 6: Average Rainfall According to Altitude Groups (monthly data for 2002–12) 
	  

	  

 
Source: Authors’ elaboration.	    
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Figure 7: Temperature According to Altitude Groups (monthly data for 2002–12) 
	  

	  
Source: Authors’ elaboration.	    

 

3. The Structural Credit Risk Model 

The default risk model has its roots in Merton (1974). In the last 10 years, this model has 

been at the center of the literature on portfolio credit risk modeling. The most general version 

of the Merton model considers the asset value of a firm 𝑖 = 1, . . ,𝑁 𝑉! as a latent stochastic 

variable. Let the pair (𝑉! , 𝜖!) ∼ 𝑁(0, 𝐼!) ∀𝑡 = 1,… ,𝑇. These firms belong to the portfolio of 

an investor (say, a rural bank) that wishes to model the default dependence across the 

portfolio. With this in mind, the investor considers a multi-factor dynamic model (Castro, 

2012; Koopman et al., 2011) as the underlying structure behind the dynamics and 

dependence across the asset values for the firms that belong in the portfolio:  

 

𝑉!,! = 𝜔!,!𝑓!
!"#$%,!!" + 𝜔!,!!

!

!!!

𝐹!,!
!"#$ + 𝜔!,!!

!

!!!

𝐹!,!!"#$ +  

1− 𝜔!,!!
!

!!!

− 𝜔!,!!
!

!!!

𝜖!,!  𝑡 = 1,… ,𝑇. 

 

(1) 

Let 𝑓! = (𝑓!
!"#$%,!!" ,𝐹!,!

!"#$ ,… ,𝐹!,!
!"#$ ,𝐹!,!!"#$,… ,𝐹!,!!"#$)  collect the set of common macro 
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factors, the product-specific price volatility factor 𝐹!,!
!"#$, and the region-specific climate 

factor 𝐹!,!!"#$ . Collecting the weight vector in 𝜔!  such that 𝜔!!𝜔! < 1 ,2  we can then 

re-write expression 1 in the following simple form:  

 

 
𝑉!,! = 𝜔!!𝑓! + 1− 𝜔!!𝜔!𝜖!,! (2) 

 

If 𝑉!,!  falls below a predetermined threshold 𝜇!  (related to the level of debt) then a 

particular event is triggered. For capital adequacy purposes, the most important event is 

default. Then, the time-varying conditional default probability is  

 

 𝜋!,! = 𝑃(𝜖!,! <
𝜇! − 𝜔!!𝑓!
1− 𝜔!!𝜔!

|{𝑓!,… , 𝑓!}) (3) 

 

 

Therefore, the probability of default of the elements of the rural portfolio is a function of the 

macro factor and, more importantly, commodity price and climate effects. 

 Although the model is indexed for a particular firm (loan), in practice estimation of 

the parameters is performed on a more aggregate scale. One way to reduce dimensionality is 

to define a set of homogenous risk classes, i.e., to group firms (or loans in the portfolio) by 

some identifiable characteristic, such as by crop and/or the geographic region where 

production takes place.  

4. The Default Risk Model 

The process of adding up firms or loans to obtain the homogenous risk classes creates a set of 

default counts for such groups (in other words, the cross sections). Let 𝑘!,!,! denote the 

number of loans for agricultural produce 𝑝 in region 𝑧 that are still active at the start of 

period 𝑡, and let 𝑦!,!,! denote the number of defaulting loans in period 𝑡.3 Then 𝑦!,!,! can 

be considered a realization of a binomial distribution conditional on the realization of a set of 

factors 𝑓!  

 

                                                
2This particular weighting scheme guarantees that the asset value process, 𝑉!, follows a standard normal distribution, which 
is a standard assumption in the portfolio credit risk literature. See Koopman et al. (2011). 
3Note that (p,z) denotes the unit of analysis of the cross-section. 
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𝑦!,!,!|𝑓! ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑘!,!,! ,𝜋!,!,!), 

𝑝 = 1,… ,𝑃, 𝑧 = 1,… ,𝑍, 𝑡 = 1,… ,𝑇. 

 

(4) 

where 𝜋!,!,! is the conditional probability of default such that 𝜋!,!,! = (1+ 𝑒!!!,!,!)!!. This 

function guarantees that 𝜋!,!,! is indeed a probability (link function) and maps the 

probability to the factors, as in expression 3. Note that a set of restrictions guarantees the 

identification of all of the parameters of the statistical model. Furthermore, there is mapping 

between the statistical model parameters and those of the structural model (see Castro, 2012; 

Koopman et al., 2011).  

 

 

𝜃!,!,! = 𝜆! + 𝜆!,! + 𝜆!,! + 𝛽!𝑓!!"#$% + 𝛽!𝑓!
!!" +,,,,,  

𝛾!!
!

!!!

𝐹!,!
!"#$ + 𝛿!

!
!

!!!

𝐹!,!!"#$ + 𝜃!!
!

!!!

𝐹!,!
!"#$ 

(5) 

 

This is not the only feasible specification of the model. One could think of a setup where 

climate factors and price volatility have the same effect on all of the units of analysis.  

The previous expressions (4,5) represent a generalized linear model (GLM). This particular  

GLM is designed for proportion data, that is, the number of defaulted vs. non-defaulted loans. 

There are two main assumptions in the model. First, the error follows a binomial distribution, 

and second, the link function is logistic. The link function is the transformation that 

guarantees that the marginal effects of the risk factors on the response variable can be 

interpreted as the change in the probabilities of the event of interest (default). Estimation of 

the parameters of the model can be performed by writing the likelihood function and using an 

iterative method for maximizing the likelihood (McCullagh and Nelder, 1989).4  

 

4.1. Estimation Results  

We have collected a dataset on counts of exposures and defaults from loans of the biggest 
                                                
4We performed the estimation of the model using the glm library of R. 

 

 
𝜃!,!,! = 𝜆! + 𝜆!,! + 𝜆!,! + 𝛽!𝑓!!"#$% + 𝛽!𝑓!

!!" + 𝛾!𝐹!,!
!"#$ + 𝛿!𝐹!,!!"#$ + 𝛿!𝐹!,!

!"#$ 
(6) 
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rural bank in Colombia (monthly data from December 2005 to November 2012). The 

proportion data on defaulted and non-defaulted (𝑦!,!,! , 𝑘!,!,! − 𝑦!,!,!) loans over the period 

of analysis is organized in two levels: the produce and the geographical zone of production 

(altitude zones). Therefore, this paired variable of interest has three indices: produce(p), 

zone(z) and month(t). These levels or indices represent homogenous risk groups, with two 

important implications: first, any loan within such a group has a similar behavior (in terms of 

creditworthiness), and second, the random variables that they represent are conditionally 

independent given the realization of a set of common and group-specific risk factors (see 

expression 4).  

 Table 2 presents the parameter estimates for the specifications of the linear factor 

model (expressions 5 and 6). When comparing the Akaike information criteria (based on the 

evaluation of the likelihood or deviance) we find a significant difference in the log-likelihood 

of the two specifications 5 and 6. However, a 𝜒!-test based on the analysis of explained 

variance indicates that the specification that includes group-specific slopes with respect to 

volatility and climate risk factors (model in expression 5) is preferred to a model with 

constant slope coefficients with respect to such factors (the result is significant at 𝑝𝑒𝑟𝑐𝑒𝑛𝑡1 

level).5  

 Although the observable risk factors are statistically significant at 𝑝𝑒𝑟𝑐𝑒𝑛𝑡5 level, 

their economic significance is small. However, in order to interpret the marginal effects of 

the factors on the outcome variable (proportion of defaults), we use the inverse of the logit 

function. This transformation of the estimated level and slope coefficients provide the 

conditional probability of default given a particular category or risk factor.  

 
  

                                                
5Because of the result of the test, we only report the estimation based on expression 5. Further results are available upon 
request to the corresponding author. 
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Table 2: Parameter Estimates, Zone of Production Based on Altitude Groups 
 

  Estimate z value   Estimate z value 
λ 0  -0,0604155 -3,966 ϒ Ric  0,011068 17,966 
λ Ric  -1,4990673 -91,113 ϒ Chi  0,0010607 0,586 
λ Chi  -0,6629319 -39,092 ϒ Ban  -0,0052589 -3,653 
λ Ban  -1,3320171 -68,354 ϒ For  0,002724 5,506 
λ For  -2,1940309 -65,069 ϒ Coc  -0,0022925 -3,742 
λ Coc  -2,6082562 -166,342 ϒ Cof  0,0118726 27,857 
λ Cof  -2,9649269 -192,181 ϒ Sug  -0,0025602 -1,067 
λ Sug  -2,2462785 -50,665 ϒ Rub  0,010165 1,98 
λ Rub  -4,432348 -76,271 ϒ Flo  0,0034989 4,588 
λ Flo  -1,7511114 -60,119 ϒ Bee  -0,0133951 -31,252 
λ Bee  -2,1837187 -144,066 ϒ Cor  0,0133955 13,047 
λ Cor  -1,1007276 -64,712 ϒ Pal  0,0064426 3,181 
λ Pal  -3,6713582 -111,272 ϒ Pot  0,0041913 10,516 
λ Pot  -1,6358277 -90,756 ϒ Pla  0,0020533 4,879 
λ Pla  -1,7126201 -108,658 ϒ Por  0,0072484 17,659 
λ Por  -1,8388967 -119,582 ϒ Tab  0,0494964 8,071 
λ Tab  -3,7688036 -85,134 δ 51-100  -0,0145933 -4,554 
λ 51-100  0,3027413 73,665 δ 101-500  0,0058512 4,193 
λ 101-500  0,1204871 45,298 δ 501-1200  -0,0068642 -4,344 
λ 501-1200  -0,1977453 -70,81 δ 1201-1800  0,0220469 11,542 
λ 1201-1800  -0,5284594 -192,749 δ 1801-2200  -0,0046369 -2,442 
λ 1801-2200  -0,7617442 -213,159 δ 2201-3000  -0,0078769 -4,683 
λ 2201-3000  -0,9284286 -284,884 δ >3000  0,0534892 19,991 
λ >3000  -0,7453008 -164,948 ϴ 51-100  -0,0068955 -2,374 
β pca  0,1897542 361,324 ϴ 101-500  -0,0741987 -36,874 
β ppi  0,3367142 29,161 ϴ 501-1200  -0,0755523 -35,631 
ϒ -0,0033713 -8,664 ϴ 1201-1800  -0,022657 -10,933 
δ -0,0067497 -4,838 ϴ 1801-2200  0,0536568 11,049 
ϴ  0,1202476 68,019 ϴ 2201-3000  -0,0167048 -6,324 
      ϴ >3000  -0,008375 -3,32 

 
 
Source: Authors’ elaboration. 

 

5. Portfolio Credit Risk Model for a Rural Bank 

The elements of a credit risk portfolio model are: exposures, probabilities of default, and the 

loss given the default or recovery rate (see de Servigny and Renault, 2004). With these 

elements we are able to obtain the loss distribution. Most credit risk model follow a 
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bottom-up approach, where the idea is to aggregate the credit risk of all individual 

instruments in the portfolio and then use some risk measure to quantify unexpected losses 

and relate these losses to a capital surcharge. Among these elements perhaps the most 

important is the probability of default or the default risk model that allow us to obtain a 

conditional probability of default 𝑃𝐷!,!!"#$. The default risk model derived and estimated in 

Section 4 permits two crucial elements in the credit risk portfolio model. First, it provides a 

functional relationship between the probability of default and its determinants (such as 

macroeconomic conditions and commodity prices, among other factors). Second, it provides 

one method to incorporate dependence across the exposures in the portfolio. The reason for 

this is that if two exposures have similar determinants of their probabilities of default, then 

these probabilities could be expected to jointly deteriorate if this determinant is stressed. 

5.1. The Conditional Default Probabilities 

The portfolio of the rural bank is composed of homogenous risk groups defined along two 

dimensions (in addition to the time dimension,  𝑡): produce, 𝑝, and zone of production, 𝑧 

(Table 1). From the bank record we obtain the average exposures within the portfolio, 𝐸!,!. 

This represents the average size of the loan granted to the agricultural project for produce 𝑝 

and zone of production 𝑧. This average is obtained from the historical data or the most recent 

(1 year) data on the portfolio. The rural bank may provide some estimate of the recovery rate 

on the loans in case there is a default, 𝑅𝑅!,!. The recovery rate denotes the percentage of the 

value of loan that one can expect to obtain after a default; therefore, 𝑅𝑅!,! ∈ (0,1) and the 

loss-given default is defined as 1− 𝑅𝑅!,!. The recovery value of a defaulted loan comes 

from government guarantees, land, or any other collateral that can support the loan. 

Unfortunately, the rural bank does not have specific information on the expected recovery 

rate for the elements of the portfolio. In such cases, one can assume a flat, predetermined 

recovery rate for all exposures in the portfolio 𝑅!,! = 𝑟𝑟  ∀𝑝, 𝑧 . Estimates of the 

unconditional (historical) default probability, 𝑃𝐷!,!!!"# , can also be obtianed from the bank 

record.  

 

𝑃𝐷!,! =
1
𝑇 𝑃

!

!!!

𝐷!,!,! =
1
𝑇

𝑁𝑜.  𝑑𝑒𝑓𝑎𝑢𝑙𝑡𝑒𝑑 𝑜𝑏𝑙𝑖𝑔𝑎𝑡𝑖𝑜𝑛𝑠!,!,!
𝑁𝑜.  𝑜𝑏𝑙𝑖𝑔𝑎𝑡𝑖𝑜𝑛𝑠!,!,!

!

!!!
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Although it is possible to simulate losses using unconditional default probabilities, it 

is more informative to do so using conditional default probabilities. The main reason, as 

mentioned in the introduction, is that these probabilities are conditional on the realization of 

the risk factor. Therefore, a distribution resulting from a given scenario for the risk factors 

can be generated. In order to functionally relate the conditional default probabilities and the 

risk factor, we need to use the estimated default risk model, 4. Recalling expressions 4 and 5, 

the conditional default probability is determined by  

 

𝑃𝐷!,!!"#$(𝑭) =
1

1+ 𝑒𝑥𝑝!!!,!(𝐅)
 

 

where 𝜃!,!(𝑭),  

 

 

𝜃!,! 𝑭 = 𝜆! + 𝜆! + 𝜆! + 𝛽!𝑓!"#$% + 𝛽!𝑓!!" + 𝛾!𝐹!"#$ + 𝛾!𝐹!"#$ , , , , , , , , , , , ,  

      +𝛿!!"#$𝐹!"#$ + 𝛿!!"#$𝐹!"#$ + 𝛿!
!"#$𝐹!"#$ + 𝛿!

!"#$𝐹!"#$ 

 

 

where 𝑭(. ):= (𝑓!"#$% , 𝑓!!" ,𝐹!"#$ ,𝐹!"#$,𝐹!"#$) denotes the vector of observable factors. 

These risk factors account for: macroeconomic uncertainty, producer price variations, 

commodity price volatility, and climate factors (rainfall and temperature), respectively. As 

illustrated in Figure 4, the first two factors affect all of the positions in the portfolio, whereas 

the last three are related to a specific crop and zone of production. All of the observable risk 

factor can be evaluated at the mean (𝐹(mean)), under average conditions, giving rise to 

what we call the sequel to the baseline results. By the same token, the risk factors can be 

evaluated at another level that denotes stressed or a particular scenario for the factors 

(𝐹(stress)) . These stressed factors in turn provide the opportunity to build stress 

probabilities of default for all of the positions in the portfolio.  

5.2. Simulating the Loss Distribution 

Most financial institutions have a large portfolio and are therefore required to maintain a 

well-organized information system regarding the loans that make up their portfolio. The most 

efficient portfolio credit risk models are those that are directly linked to the bank’s 
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information system, which enables them rapidly and thoroughly to provide reports on the 

creditworthiness of the portfolio. A schematic example of such a risk engine is presented in 

Figure 8.  
	  

Figure 8: Estimation and Simulation Engine to Derive Loss Distribution  

 
Source: Authors’ elaboration. 

 

This example depicts the steps taken to go from the loan data to the loss distribution 

and the economic capital.  

1. The starting point is the data warehouse, where the bank centralizes all of the 

information on the loans in the portfolio. For this exercise, the following 

information is needed: the peso value of average exposures, the recovery rates, the 

number of obligations, and the number of defaults. The bank regularly has an area 

in charge of monitoring and maintaining an updated system on observable risk 

factors.  

2. The default probability model uses the information on the number of obligations, 

the number of defaults, and the historical information on risk factors to estimate 
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the parameters that relate the risk factors to the default process. The main output at 

this stage is an estimated equation that can provide, given an scenario for the 

observable factors, the conditional default probabilities.  

3. At the simulation stage, first there is a probability model that receives the number 

of obligations and the default probabilities (conditional or unconditional) and 

generates draws on the number of defaults expected out of a given number of loans 

granted in that segment of the portfolio. Let 𝑠 denote the index for the simulation, 

𝑠 = 1,… , 𝑆.  

 

 𝑦!,!! ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑘!,! ,𝑃𝐷!,!) (7) 

 

where 𝑘!,!  is the number of obligations and 𝑃𝐷!,!  can be defined as the 

conditional or unconditional default probabilities. These two parameters 

determine a draw from the binomial distribution. This draw represents the number 

of defaulted obligations within the segment of the portfolio associated with 

produce 𝑝  and zone of production 𝑧 . Let 𝑌!,!:= {𝑦!,!! }!!!!  denote the 

succession of these draws, that is, the total number of simulated defaults for that 

particular element in the portfolio.  

 

4. The default counts generated by the probability model, the average exposures, and 

the recovery rates provide the value of the net losses in this segment of the 

portfolio  

 
l!,!! = E!,!(1− RR!,!)y!,!!  (8) 

 

Let 𝐿!,!:= {𝑙!,!! }!!!!  denote the succession of losses. 𝐿!,! ∼ 𝑓!,! where 𝑓!,! denotes 

the empirical loss distribution. 

 

5. The simulated individual losses on every position in the portfolio are aggregated 

to obtain the overall loss distribution of the portfolio  

 

𝑙! = 𝑙!,!!
!!
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Let 𝐿:= {𝑙!}!!!!  denote the succession of portfolio losses. 𝐿 ∼ 𝑓  where 𝑓 

denotes the empirical loss distribution. Note that the previous expression implies 

independence across the losses of the homogenous risk groups. In practical terms 

it also implies no diversification gain from holding and providing loans across 

different crops or regions. This is therefore quite a conservative estimate of total 

losses. This is, however, a strong assumption for draws 𝑦!,!!  based on the 

historical unconditional 𝑃𝐷!!"# default probability. But this is not the case for 

draws based on the conditional 𝑃𝐷!"#$  default probability, since 𝑦!,!!  are 

conditionally independent given the realization of the factors. This is an important 

element to keep in mind when obtaining loss distributions based on conditional or 

unconditional default probabilities. 

 

6. After we obtained the empirical loss distributions (at the portfolio level 𝑓  and/or 

specific exposure levels 𝑓!,!  , we can apply standard risk measures such as 

value-at-risk (𝑉𝑎𝑅!(𝜏)) or expected shortfall (𝐸𝑆!(𝜏)) to quantify tail risk. 

Economic capital is interpreted as the amount of capital buffer that a bank needs 

to set aside to avoid being insolvent with τ confidence level. Most of the time it is 

calculated at the one-year horizon. A common market practice is to use the 

following estimates depending on the risk measure chosen. 

 

𝐸𝐶!"# = 𝑉𝑎𝑅! 𝜏 − 𝐿 

𝐸𝐶!" = 𝐸𝑆! 𝜏 − 𝐿 

where 𝐿 is the average loss (center of the loss distribution). 

 

At the end of the simulation process, we arrive at a distribution for the overall losses 

of the financial institution. This distribution can be based on average conditions or stress 

conditions based on particular scenarios that management considers relevant. An example of 

the type of picture to be expected when plotting the loss distribution is presented in Figure 9.  
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Figure 9: Distribution of Losses for the Positions in the Portfolio and the Overall Loss 
Distribution of the Portfolio.  
 

 

	  
	  
Source: Authors’ elaboration. 
Notes: The support of all of the distribution is currency expressed in billions of pesos (COP). 
	  

6. Baseline Results: Empirical Application 

This section contains an example based on the data from the rural bank’s portfolio and the 

observed factors to illustrate the procedure for simulating the loss distribution (for both the 

individual position and the overall portfolio) and estimating the risk measures and the 

economic capital.  

 As explained in the previous section, the first step is to obtain the information 

required for the simulation. The altitude group portfolio is composed of 115 positions or 

homogenous risk groups determined by the pairing of produce and zones of production. 

Columns (3) to (5) in Table 3 present a sample (17 homogenous risk groups) of the 

information from the portfolio used in simulation: average exposure (value in portfolio in 

billion COP), the average number of obligations that are in the homogenous risk group, the 
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historical unconditional probability of default. All of the averages are taken with respect to 

the time series information. The table represents the average behavior of the homogenous risk 

groups in the portfolio from December 2005 to November 2012. 

 Column (6), conditional probability of default, is also considered in the simulation. 

However, we do not estimate this probability of default using the historical data but rather 

using the default probability model. The conditional default probability is obtained using the 

observed factors (macroeconomic, price volatility, and climate) evaluated at their historical 

average levels. In particular, climate information say temperature is considered to be at its 

historical (seasonal) median level. In general, columns (5) and (6) of Table 3 show that 

historical probabilities and conditional probabilities of default look very similar. This implies 

that the estimated model, in Section 4, is able to provide an accurate picture of the average 

default risk conditions within the rural portfolio. 
 
Table 3: Sample of Data for Simulation: Zone of Production Based on Altitude Groups  

 2 3 4 5 6 7 8 9 

Produce Zone Value in 
Portfolio 

No. Of 
Obligations 

PD 
Historical 

PD 
Conditional ES(0.99) 

Economic 
Capital 
(ES) 

EC(ES)/Exposure 

Cot 101-500 14,3 186 65% 58% 889,4 123,2 4,6% 

Ric 501-1200 14,5 322 25% 20% 606,5 130,5 2,8% 

Chi 1201-1800 3,8 717 30% 28% 432,7 55,8 2,1% 

Ban 501-1200 4,6 411 17% 21% 253,2 52,7 2,8% 

For 2201-3000 0,8 26 13% 5% 1,7 1,1 5,3% 

Coc 0-50 7,9 1313 11% 9% 563,5 118,7 1,1% 

Cof 1201-1800 216,1 54071 5% 4% 257832,2 14189,2 0,1% 

Sug 1201-1800 5,3 81 7% 7% 32,9 17,9 4,2% 

Rub 101-500 15,5 176 2% 2% 67,2 43,0 1,6% 

Flo >3000 1,7 86 25% 11% 14,0 6,2 4,2% 

Bee 501-1200 198,2 29419 10% 10% 306397,3 14112,4 0,2% 

Cor 101-500 3,0 403 45% 34% 239,1 37,2 3,1% 

Pal 51-100 33,5 152 3% 4% 230,4 117,3 2,3% 

Pot 1801-2200 2,3 375 22% 12% 68,1 17,6 2,1% 

Pla 501-1200 15,0 4053 21% 16% 5215,7 414,0 0,7% 

Por 501-1200 11,4 3689 18% 15% 3512,6 331,5 0,8% 

Tab 2201-3000 0,3 66 6% 2% 0,7 0,5 2,4% 
 

 

 
Source: Authors’ elaboration. 
Notes: Value in portfolio in billions of COP (exposure); number of obligations; historical and 
conditional default probability; expected shortfall and economic capital in billions of COP; economic 
capital as percentage of full exposure.  
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As observed, there is important variation in the historical and conditional default 

probabilities across the portfolio, ranging from 65 percent and 58 percent in cotton at zone 

101-500, to 2 percent in rubber at zone 101-500. To get a complete picture of the variation, 

Figure 10 reports the average historical default probability of produce in the x-axis against 

the standard deviation across the zone of production. In addition, the size of the bubbles also 

reflects the distance between the largest and the smallest probability of default across the 

zones of production but within the same crop. The results are interesting in terms of the risk 

of the positions in the portfolio. We find that high probability of default produce, such as 

cotton, rice, and corn, also have considerable variation across the zones of production of 

these products, whereas low probability of default produce such as rubber and palm oil show 

little variation across zones of production. In terms of the number of obligations and the 

average size of the exposures, the most important positions in this sample are coffee in zone 

1201-1800 and livestock in zone 501-1200.  

 

Figure 10: Average Historical Default Probabilities for each Crop and Variation across 
Zone of Production Altitude 

Source: Authors’ elaboration.	   	  
Note:	  The	  abbreviations	  (inside	  the	  bubbles)	  correspond	  to	  the	  crops	  mentioned	  in	  Table	  1.	  

 

 In addition to the information on the portfolio or the estimated default risk model, we 

make an assumption about the recovery rate of 50  𝑝𝑒𝑟𝑐𝑒𝑛𝑡 in all of the positions in the 

portfolio. In other words, when there is a default, the rural bank is able to recover 

50  𝑝𝑒𝑟𝑐𝑒𝑛𝑡 of the value of the exposure. This is an arbitrary assumption that we must make 
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since there is no historical information on the recovery rate on defaulted loans in this rural 

portfolio.  

The following are used to obtain the baseline losses of the portfolio: the average 

exposure, the number of obligations, the assumption on the recovery rate, and—in 

particular—the conditional default probability (estimated from the factors at their historical 

average level). With the average number of obligations and the estimated default probability, 

we use expression 7 to take draws on the number of defaulted obligations 𝑦!,!! . We then use 

these draws, the value of the average exposure, and the assumed recovery rate to get a 

realization of the losses 𝑙!,!! . To obtain the loss distribution of each position in the portfolio, 

we use (𝑆 = 1000) simulations. Columns (7) to (9) in Table 3 contain some of the results of 

the simulation by position in the portfolio. Column (7) indicates the maximum one-year loss 

given by the expected shortfall evaluated at the 99 percent confidence level. Column (8) 

reports the estimated economic capital based on the previous tail risk measure. Finally, 

column (9) reports a blunt estimate of the ratio of unexpected losses over the full exposure. 

This full exposure is determined by multiplying the average exposure by the number of 

obligations. In general, in the subsample, this unexpected loss ratio is below 5 percent except 

for forest crops in zone 2201-3000. Even though we only present the subsample of the 17 

positions in the portfolio, we derive the loss distribution and risk measures for all 115 

positions. Although economic capital at the position level is indicative of the unexpected 

losses on this position, we should refrain from using this estimation to determine the capital 

contribution of each position to the buffer for the full portfolio. The reason is that economic 

capital allocation should depend on the composition of the whole portfolio and not on the 

individual losses that each position may face.  

 Figure 9 contains an example of the simulated loss distribution for bananas and palm 

oil for zones 501-1200 and 51-100, respectively. The shapes of these distributions are quite 

different from one other, reinforcing the specificity of the risk inherent in each of these rural 

projects. The figure also depicts the process of adding together the individual losses for each 

position in order to obtain the overall losses of the entire portfolio (picture on the right-hand 

side). Once we have the loss distribution (at both levels: individual and overall) we can use 

the risk measures such as VaR (𝜏 = 99  𝑝𝑒𝑟𝑐𝑒𝑛𝑡) and expected shortfall (𝜏 = 99  𝑝𝑒𝑟𝑐𝑒𝑛𝑡) to 

determine the maximum loss that we should observe most of the time.  
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7. Scenarios and Stress Testing: Empirical Application 

Simulation of the loss distribution can also be used for stress testing. The crucial element for 

informed stress testing is the development of a series of scenarios based on the observable 

risk factors. For the current exercise, we build five scenarios to compare against the baseline 

results. The baseline results were constructed using the following assumptions:  

• The recovery rate is set at 50 percent.  

• Macroeconomic conditions are determined to be 1.6 percent annual growth in 

agricultural production and 5 percent growth in the agricultural producer price index.  

• Price volatility is set to its historical average.  

• Since the climate variables are measured as standard deviations from their monthly 

median estimates, at the baseline they have less than half of a standard deviation from 

their historical levels. Whether this deviation is positive or negative depends on the 

historical value for each zone of production.  

 

By modifying the previous assumptions, we generate the following five scenarios:  

1. Sce1: Macroeconomic conditions are worsened by setting agricultural production at 

0.2 percent annual growth and 19 percent growth in the agricultural producer price 

index. Price volatility is set to its 95 percentile. Climate variables are set at one or two 

standard deviations above their historical levels. We choose these deviations because 

they reflect, in most zones of production, the situation observed in the second 

semester of 2010 and the first semester of 2011, when climate conditions (especially 

rainfall) were severe across Colombia.  

2. Sce2: All variables are set at baseline level but the recovery rate is increased to 70 

percent rather than 50 percent. The purpose of this scenario is primarily to stimulate 

the use of an agricultural insurance scheme. There are many different ways to 

mitigate counterparty risk in a portfolio and hence increase the recovery rate on a 

particular loan once a default event is triggered, such as increasing the collateral 

requirements or increasing the effectiveness of legal procedures. However, an 

increasingly popular scheme is to provide crop yield insurance, or any type of 

insurance designed for agricultural projects. The increase in the recovery rate 

assumed in the portfolio credit risk model could possibly come from the availability 

of such insurance schemes.  

3. Sce3: only considers the price volatility effects of scenario 1.  
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4. Sce4: only considers the increase in rainfall from scenario 1.  

5. Sce5: only considers the increase or decrease in temperature from scenario 1.  

From the baseline and scenarios we derive conditional default probability 𝑃𝐷!,!!"#$ and then 

use these as a primary input to simulate losses across the rural portfolio. 

The results of the stress test implied by the scenarios in the rural portfolio are 

presented in Table 4 and Figure 11. The results convey three main messages. First, as 

expected, a substantial increase in the recovery rate (Scenario 2) reduces economic capital by 

around 40 percent. Important steps should be taken to mitigate losses once a default occurs. 

One such scheme is to implement some sort of agriculture-oriented insurance. We saw that 

default is not an unlikely event in agricultural portfolios (it is even highly likely in some 

crops, such as cotton). Second, weather-related risk is probably more important that price 

volatility; commodity price-related shocks increase economic capital by 12.2 percent, while 

weather-related shocks increase economic capital by 20 percent. Third, there is no conclusive 

evidence on whether one particular weather shock, i.e., rainfall or temperature, is more 

important than another in determining the default and hence economic capital. From the 

estimation (of the default risk model) and the stressed scenarios, they seem to be equally 

important.  

As observed in Figure 11, the different scenarios are not having a particularly strong 

effect on the tails of the distribution; rather, they shift the location of the distribution. This is 

consistent with the fact that the shocks that have been assigned in the different scenarios are 

to specific factors rather than common factors.  

 
Table 4: Percentage Change in Tail Risk Measure (expected shortfall) and Economic 
Capital of Scenarios with respect to Baseline Measure 
 
 

 

 

 

 

Source: Authors’ elaboration. 

  

  Altitude   

 

ES(0.99) EconomicCapital(ES) 

Sce1 9,4% 17,6% 

Sce2 -39,7% -23,9% 

Sce3 2,1% 12,2% 

Sce4 5,4% 16,7% 

Sce5 12,3% 19,7% 
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Figure 11: Loss Distributions of Baseline and Stressed Scenarios, Zone of Production 
Altitude 
	  

	  
Source: Authors’ elaboration.	  

8. Conclusions 

Rural banks face important challenges in terms of risk management. Many of them are 

inherited from their specific charter (sometimes government-sponsored) to support the 

development of the agricultural sector. In theory, they are specialized institutions, unlike 

commercial banks. The reality is that each agricultural project supported by a loan is 

sensitive to many risk factors (e.g., price of inputs, demand, weather conditions, uncertainty 

of spot price of produce). We use this fact to create a risk map and design a portfolio credit 

risk model that can be accommodated to the portfolio of an existing rural bank. In particular, 

our design is interested mainly in the effects of commodity price volatility (the final price at 

which the farmer is able to sell his produce in the spot market) and the effect of climate 

variation (temperature and rainfall).  

In general, the literature on agricultural risk management is more normative than 

practical, and there are very few applications in actual portfolios. We design and estimate a 

default risk model that is able to adequately replicate (in-sample) the average behavior of 

historical default probabilities of the rural portfolio. Furthermore, we explain how to use the 

model to derive estimates of the unexpected losses of the rural portfolio and estimate the 

economic capital required to cover such losses. This portfolio credit risk model allows us to 

perform stress testing on the parameters used in the simulation. From the stress test we can 
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compare the relevance of the different risk factors as determinant of the economic capital. 

The results of the stress test indicate that climate risk factors are more important than 

commodity price volatility. However, we cannot precisely determine whether temperature or 

rainfall is more important. Further studies should focus on the relationship between regional 

variation in rainfall (and to a lesser extent temperature) and crop yields. This could be very 

important for the success of an agricultural project and hence the financial viability (from the 

point of view of a rural bank) of granting a loan to such project. 

  



 29 

  

References 
Behrens, A. and G. Pederson. 2007. “An Analysis of Credit Risk Migration Patterns of  

Agricultural Loans. Agricultural Finance Review 67: 87–98. 

Castro, C. 2012. “Confidence Sets for Asset Correlation in Portfolio Credit Risk.” Revista de  

Economia del Rosario 15(1): 19–58. 

de Servigny, A. and O. Renault. 2004. The Standard & Poor's Guide to Measuring and  

Managing Credit Risk. First Edition. New York, NY: McGraw-Hill.  

Demey, P., J.-F. Jouanin, and C. Roget. 2004. “Maximum Likelihood Estimate of Default  

Correlation.” Risk (November): 104–8. 

Escalante, C., P. Barry, T. Park, and E. Demir. 2004. “Farm-level and Macroeconomic  

Determinants of Farm Credit Migration Rates.” Agricultural Finance Review, 64: 

135–49. 

Fama, E. and K. French. 1993. “Common Risk Factors in the Returns on Stocks and Bonds.”  

Journal of Financial Economics 33(1): 356 

Geman, H. 2005. Commodities and Commodity Derivatives. Modelling and Pricing for  

Agriculturals, Metals and Energy. Hoboken, NJ: John Wiley & Sons, Ltd. 

Gilbert, C. and C. Morgan. 2010. Review food price volatility. Philosophical Transactions of  

the Royal Society, 365(1554): 3023–34.  

Gloy, B. A., E. L. LaDue, and M. A. Gunderson. 2005. “Credit Risk Migration and  

Downgrades Experienced by Agricultural Lenders.” Agricultural Finance Review 

65(1): 1–16. 

Gordy, M. 2000. “A Comparative Anatomy of Credit Risk Models. Journal of Banking and  

Finance 24(1-2): 119–49. 

Gupton, G., C. Finger, and M. Bhatia. 1997. CreditMetrics. Technical Document. New York,  

NY: J.P. Morgan & Co., Inc. 

Hess, U., K. Richter, and A. Stoppa. 2004. Weather Risk Management for Agriculture and  

Agrobusiness in Developing Countries. Washington, DC and Rome, Italy: IFC, World 

Bank and ProcomAgr.  

Kahn, B. and D. Zaks. 2009. Investing in Agriculture: Far-reaching Challenge, Significant  

Opportunity. Frankfort, Germany: Deutsche Bank Climate Change Advisors. 

Katchova, A. and P. Barry. 2005. “Credit Risk Models and Agricultural Lending.” American  

Journal of Agricultural Economics 87(1) (February): 194–205. 



 30 

Koopman, S., A. Lucas, and B. Schwaab. 2011. “Modeling Frailty-Correlated Defaults Using  

many Macroeconomic Covariates.” Journal of Econometrics 162: 312–325. 

Koopman, S., A. Lucas, and R. Daniels. 2008. A Non-Gaussian Panel Time Series Model for  

Estimating and Decomposing Default Risk. Journal of Business and Economic 

Statistics 26(4): 510–525. 

Larson, D., J. Anderson, and P. Varangis. 2004. “Policies on Managing Risk in Agricultural  

Markets.” The World Bank Research Observer 19(2): 199–230. 

McCullagh, P. and J. Nelder. 1989. Generalized Linear Models. Chapman & Hall. 

Merton, R. 1974. “On the Pricing of Corporate Debt: The Risk Structure of Interest Rates.”  

The Journal of Finance 29(2): 449–70. 

OECD (Organisation for Economic Co-operation and Development). 2011. Risk  

Management in Agriculture: What Role for Governments? Paris, France: OECD. 

Pederson, G. and L Zech. 2009. “Assessing Credit Risk in an Agricultural Loan Portfolio.”  

Canadian Journal of Agricultural Economics 57:169–85. 

Ross, S. 1976. “The Arbitrage Theory of Capital Asset Pricing.” Journal of Economic Theory 

13(3): 341–360. 

Schaffnit-Chatterjee, C. (2010. “Risk Management in Agriculture: Toward Market Solutions  

in the EU.” Deutsche Bank Research. Current Issues. 

 


	Cover Default Risk in Agricultural Lending final
	CMF DP Default Risk in Agricultural Lending FINAL[1].pdf

