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Abstract
*
 

 

Climate-sensitive health problems kill millions every year and undermine the 

physical and psychological well-being of millions more. To identify the climate 

impacts on dengue risk in Brazil, a comparative case study is used based on the 

synthetic controls approach. The South and Northeast regions of Brazil are 

compared to the rest of the country in order to identify those impacts. The results 

suggest that dengue is more prevalent in warmer regions, but the humidity 

conditions and amount of rainfall seem fundamental for increase of the disease’s 

prevalence in temperate climate regions or drier tropical regions of the country. 

On the other hand, the increase in rainfall in the rainiest tropical areas could 

diminish the disease’s prevalence, as standing water accumulations might be 

washed away. Therefore, due to expected climate changes in the future, the 

dengue fever distribution in the country might change, with the disease migrating 

from the north to the south. Public policy’s role in minimizing these effects in the 

country should be focused on anticipating the proper climate conditions for 

dengue incidence by using integrated actions among local authorities. 

 

JEL classifications: I18, Q54 

Keywords: Dengue fever, Synthetic control method, Climate change impacts on 

health 
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1. Introduction 
 

The observation of historical annual temperature values (and anomalies) from 1860 to 2006 

supports the idea of climate evolution during the last 150 years (UK Met Office, 2012). Figure 1 

indicates a rising trend in average temperature during the period. From 2000 to 2005, the average 

temperature was 0.48 ºC above the long-term average, and 2005 was the second warmest year of 

the whole sample. 

 

Figure 1. Temperature Deviation from Long-Term Average in Degrees Celsius (
o
C), 

1860 to 2006 

 

 
 

Source: UK Met Office (2012).   

Note: HadCRUT3 Temperature anomaly (
o
 C) 

 

Trends from 1900 to 2005 have also been observed in precipitation (IPCC, 2007). In 

South America, increase in rainfall is observed for the eastern areas of the continent. There is 

also evidence of an increase in extreme event frequency, such as droughts, floods, heat and cold 

waves, hurricanes and other storms (IPCC, 2001). Thus, the current climate change discussion is 

no longer about the existence of the phenomenon, but rather the magnitude of its longer-term 

impacts and efficient adaptation measures.  

According to the World Health Organization (2012), climate-sensitive health problems 

kill millions of people every year and undermine the physical and psychological welfare of 

millions more. In the particular case of vector-borne diseases, climate conditions ensure vectors’ 

survival and reproduction and, consequently, disease transmission (Kelly-Hope and Thomson, 

2008). Increases in heat, precipitation, and changes in humidity can allow insects to move to new 

regions and spread diseases there.   
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The vector-borne disease analyzed in this paper is dengue fever. In Latin America, it is 

the most harmful infectious disease and is considered an emerging mosquito-borne disease that is 

a major public health concern in Brazil. Dengue is transmitted to humans by female Aedes 

aegypti mosquitoes, with high transmission rates throughout the day and night in urban areas. 

The cycle, reproduction and survival of mosquitoes are highly dependent on weather 

conditions—namely, humid and warm environments—and the accumulation of water is 

necessary for the reproduction and spread of the mosquito population.  

In Brazil, the annual incidence of dengue between 1986 and 2012 was generally 

increasing, especially since 1998, albeit with a good deal of fluctuation. According to the 

Ministry of Health’s Information System for Disease Notification (MS/SINAN),1 there were 5.3 

million reported cases of dengue fever in Brazil between 2002 and 2012. 

 

    Figure 2. Annual Dengue Cases per 100,000 Inhabitants, 1986 to 2012 

 

Source: Notifications of Dengue, Brazilian Ministry of Health’s Information System for Disease 

Notification (MS/SINAN). 

 

In 2010, for example, a spate of dengue fever outbreaks occurred and almost one million 

cases of the disease were reported. Due to the importance of the disease in Brazil, the goal of this 

study is to identify the climate effect on dengue in the country in order to measure the impact of 

climate change on dengue risk, and to discuss the potential role of public policy in minimizing 

those effects. The government’s influence on public policy is mainly determined by the 

                                                 
1
 SINAN is a national system for notification and investigation of diseases, in existence since 2001.  
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surveillance expenditures and sanitation measures (both urban infrastructure problems controlled 

by local governments, with federal and state support), by type of housing, educational measures, 

and by assuring health assistance to people affected by such diseases (availability of hospital 

beds, health expenditures).  

The study uses a comparative case to identify the climate impacts on dengue risk, based 

on the comparison of cities that experienced specific climate conditions that increased the risk of 

dengue with cities whose climate conditions stayed the same (Section 2). The counterfactual is 

based on the synthetic controls approach, which generates control groups as a combination of 

units not exposed to the intervention (Abadie and Gardeazabal, 2003; extended by Abadie et al., 

2010). Thus, the synthetic control is a weighted average of the available control units, which sum 

to one. As Brazil is a geographically large country subject to many climate patterns, there are 

many possibilities for obtaining control groups by using this methodology (Sections 4 and 5). 

Once the effect is identified (Section 6), climate change simulations can be performed to predict 

the expected impacts of changes in climate on the spread of dengue fever in Brazil (Section 7).  

 

2. Basic Model 
 

Cavallo et al. (2013) analyzed the effect of natural disasters such as floods, hurricanes and 

earthquakes on countries’ GDP in the short and long run. Following Abadie and Gardeazabal 

(2003) and Abadie et al. (2010), the authors applied a comparative country analysis from the 

construction of an appropriate counterfactual—a group of synthetic controls. In this paper we 

apply a strategy similar to that of Cavallo et al. (2013) by trying to measure the consequences of 

climate change, an exogenous variable, on dengue incidence. The exogenous climate 

characteristics permit us to build a synthetic control using cities where a strong impact of climate 

change cannot be observed. 

According to Abadie and Gardeazabal (2003), Abadie et al. (2010) and Cavallo et al. 

(2013), a quasi-experimental design of this type can be preferable to conventional methods for 

various reasons, such as the ability to explore the variability of the municipal rate of dengue 

fever using a time series model. However, this ignores the possibility that the magnitude of 

mosquito proliferation can be different between regions. An alternative would be to control for 

the unobservable characteristics of city fixed effects, but this would lead to extrapolations, since 
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this model requires constant effects over time. Finally, the use of a difference-in-difference 

model would be inappropriate due to use of macro data as variables in the model.  

One of the main determinants of dengue incidence is environmental features (Barcellos et 

al., 2009), dominated by the importance of climate. Relevant climate conditions for dengue 

vectors’ survival and reproduction include average temperature not too low or high, enough 

humidity to regulate the temperature of mosquitoes, and a reasonable amount of precipitation for 

egg deposition. Regarding the amount of rainfall, it is believed that large amounts of rain may 

have a reverse effect, since this can wash away standing water accumulations, reducing the 

number of surviving larvae. 

The method for identifying the climate’s impact on dengue is based on the comparison of 

areas affected and not affected by the climatic events believed to aggravate risk. When it comes 

to dengue, the South region of Brazil is the only one not being affected (Pereda, 2012). Hence, 

this area can be a target area in terms of the identification of climate impacts on dengue. 

Thus, the identification strategy will be to estimate the increase in dengue risk due to a 

higher than average amount of rainfall (or relative humidity). Cities that showed a deviation from 

those climate conditions will be analyzed as the treatment group/city. As the cities cannot be 

observed in the situation of treated and non-treated simultaneously, the first step is the 

construction of a counterfactual for impact evaluation of this phenomenon. There is only one 

figure available every year with respect to the climate variable, dengue incidence and 

infrastructure and socioeconomic information.  

Under such conditions, we employ the strategy of building a synthetic control variable 

according to the proposal of Abadie and Gardeazabal (2003), and extended by Abadie et al. 

(2010), to estimate the impact of climate on dengue fever incidence. A brief summary of this 

strategy starts with the recognition of the data structure necessary for the method. In this sense, 

consider the existence of a panel data set with observations for a range of cities Ic + 1 for a 

period of T years, in which Ic corresponds to the number of untreated cities considered. Assume 

also that the climate event is observed in year        <T, only in the city which is the focus of 

evaluation. Suppose that    
  and    

 , respectively, denote the value of the focus variable of the 

evaluation (dengue incidence risk) in city i with and without the climate event. The aim is to 

obtain estimates for: 

 

       
     

         
 ,   for t >                                                                              (1) 
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in which    
     , since these are observed values. 

Therefore, the aim is to estimate the values of    
  from other Ic cities. In this sense, 

Abadie et al. (2010) assume that such values are generated from a model of the type:  

 

   
                                                                                                             (2) 

 

in which j indexes the Ic cities that did not undergo the climate event,    is an unknown factor 

common to the cities,    is a vector of observed variables not affected by the event and    is its 

parameter vector,    is a specific effect vector of city j and    its unknown parameter vector, and 

    represents the unobserved random error.   

This strategy aims to find a vector w*, among the weight vectors W (Ic x 1), 

(             )
 , in which      and ∑     

  
   , such that: 

 

∑   
        

  
   , for       , and ∑   

      
  
                                                    (3) 

 

In other words, a vector w* is obtained such that the treated city (I) is reproduced by the 

Ic cities that did not experience the climate event in the period before the event.  Abadie et al. 

(2010) show that, under standard conditions, the expected value of    
  ∑   

    
  
   , i.e., of the 

difference between the variable of interest from city I, which underwent the climate event for the 

period without this occurrence, and the weighted sum (using vector w*) of the values of the cities 

without the climate event, is zero. Thus, ∑   
    

  
    is an unbiased estimator of    

 . Estimates of 

the climate impact in city i in the periods after the climate event can be obtained by the following 

difference: 

 

  ̂       ∑   
    

  
    , for t >                                                                                     (4) 

 

In general, the conditions in (3) do not tend to be fully applied. Thus, the synthetic 

control represented by the weighting vector w* is chosen so that these conditions are 

approximately assumed. 

An interesting and useful aspect of this strategy is that, unlike traditional applications of 

the difference-in-difference approach (where no specific control for the influence of units/cities 

varies in time), the model of equation (2), from the parameter   , allows unobserved specific 

effects to vary in time. This stems from the fact that the conditions for a synthetic control satisfy 
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the conditions in (3) only if the prevailing conditions ∑   
      

  
    e ∑   

      
  
     are 

approximately true (Abadie et al., 2010). 

The calculation of the synthetic control involves the minimization of the distance measure 

between the values of the city variables impacted by climate,    (variable vector), and the same 

set of variables for cities that did not undergo the event in the same period, weighted by W,     

(vector of weighted variables): 

 

√(      )  (      )                                                                                               (5) 
 

in which V is a positive semi-definite symmetric matrix affecting the mean squared error 

estimator (MSEE).  

Following Abadie and Gardeazabal (2003) and Abadie et al. (2010), we choose V so that 

the variable’s MSEE (health risk variable) is minimized in the period before the event. 

Finally, inferences can be made using results of placebos, which correspond to the 

evidence found from the application of the method over the cities considered as controls. The 

idea is to get results of false events/interventions for each of the considered cities in the same 

year of the event, generating a set of trajectories for the cities in relation to their alleged synthetic 

controls, which serve as comparison to the trajectory initially obtained for the city of interest. 

Besides greater control for the influence of unobserved variables, the strategy of using 

synthetic control has other advantages over non-experimental methods. Among these are the 

possibility of still drawing inferences when only one treated value is observed; the fact the 

method only uses information about the period before the event, so the choice of control is not 

related to any direct results; and the fact there is transparency in the control choice, since the 

method involves consideration of the similarities of variables from the period before the event. 

 

3. Data Sources and Description 
 

The dataset aggregates annual municipal-level panel data for the period 2001-2010 in Brazil. For 

the climate variables and for the dengue prevalence rates, information can be used by season of 

the year. The following table presents the description of data and sources. 
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Table 1. General Variables and Sources 

Variable(s) Source Description 

Observed climate 

data 

Brazilian Meteorology Institute 

(INMET) 

Average temperature, average relative humidity 

and accumulated rainfall (in millimeters) per 

month by weather station from INMET. All data 

were transformed to municipalities by season.
[1,2]

 

Climate change 

projections 

Department for Weather 

Forecasting and Climate 

Studies (CPTEC/INPE) 

Predictions of average temperature, relative 

humidity and rainfall are performed using three 

models run by INPE and the IPCC scenarios of 

emissions from 2041 to 2070.
[3]

  

Dengue fever 

notifications  

Database of the National 

Health System (DATASUS) 

Contains all notified cases of dengue in the season 

of the year by municipality of residence reported 

and stratified by age or income.  

Socioeconomic 

data  

National Household Survey 

(PNAD) 

Overall population characteristics annually 

collected: education, labor, income and housing, 

among other socioeconomic data (migration, 

fertility, health, food security, and other topics).  
[1]

 Brazil’s network of weather stations covers much of the coast. To transform the data from the weather stations into 

municipal data, we used the kriging method of spatial interpolation (Haas, 1990), which allows the interpolation of 

data with flexibility to specify the covariance between the outputs.  
[2]

 The local political unit in Brazil is the municipality, which as similar to a county, except there is a single mayor and 

municipal council. There are no unincorporated areas in Brazil. 
[3]

 CPTEC/INPE uses regional models, which downscale the global models (HadRM3P Model; Eta/CPTEC Model; 

and RegCM3 Model). Correlation anomalies among the models are calculated in order to detect consistent signals for 

the predictions. The output of the models is an average of the combined results from three forecasting model. This is 

called the “multi-model ensemble technique” (UK MET Office, 2012). 

 

In order to have the most wide-ranging dataset for the socioeconomic variables’ 

evolution, the data needed to be aggregated into the 27 capital cities of the Brazilian states (in all 

cases the largest city in each state), to enable using the sample of socioeconomic data from the 

yearly National Household Survey, which provides the most complete data about the country. 

The climate among these cities differs significantly. Table 2 shows that the temperatures in 

Brazil are typically very high, especially in the northern region. On the other hand, the South of 

Brazil has lower temperatures (and occasional frosts and brief snowfalls during the winter). The 

North region’s cities are rainier, reaching approximately 3,000 mm of precipitation per year. The 

rainy season also lasts longer in this region, contrasting with the climate of the neighboring 

region, the Northeast, which has the highest temperatures and driest seasons in the country. 

Table 3 shows the mean of the socioeconomic variables for the period 2001-2010, by Brazilian 

capital.  



 
 

9 

Table 2. Climate Description, Seasonal Long-Term Average (1980-2009), 

by Capital City of Brazilian States[1] 
 

Capital cities 
Altitude     

(in 

meters) 

Average Temperature 

(in 
o
C) 

Average Monthly 

Precipitation (in mm) 

Average Relative 

Humidity (in %) DJF MA

M 
JJA SO

N 
DJF MA

M 
JJA SON  

DJF 

 

MA

M 

 JJA  

SO

N 

N
o

rt
h
 

Porto Velho            

85  

25.5

3 

24.9

1 

23.9

7 

25.6

6 

262.3

4 

229.0

5 
85.43 147.5

5 

87.9

2 

86.2

2 

75.0

2 

78.1

4 Rio Branco           

153  

25.4

7 

24.8

9 

23.5

1 

25.5

5 

276.6

0 

195.8

6 
45.59 145.5

8 

89.9

1 

87.6

5 

76.1

0 

79.8

9 Manaus            

92  

26.3

2 

26.3

2 

26.7

8 

27.4

8 

264.2

5 

276.5

6 
86.62 107.5

8 

86.8

4 

86.3

2 

75.2

1 

76.7

7 Boa Vista            

85  

27.7

2 

27.8

2 

27.3

1 

28.8

8 
88.79 203.5

6 

274.4

1 
84.07 85.5

7 

85.5

2 

76.9

3 

76.0

0 Belém            

10  

26.2

3 

26.2

1 

26.4

0 

26.9

5 

203.0

9 

252.8

6 

100.9

9 
58.75 84.9

5 

86.5

1 

78.2

1 

76.9

4 Macapá            

16  

26.6

0 

26.5

6 

27.0

5 

28.2

9 

255.4

5 

312.0

8 

161.6

9 
41.77 83.9

8 

86.2

0 

77.3

4 

72.9

2 Palmas           

230  

25.6

1 

25.7

7 

25.1

5 

26.7

3 

269.5

7 

180.8

7 
7.95 136.8

5 

82.2

8 

80.2

8 

62.7

0 

70.3

2 

N
o
rt

h
ea

st
 

São Luís            

24  

26.6

5 

26.3

4 

26.4

2 

27.3

0 

207.3

9 

378.6

6 

113.8

1 
13.41 80.7

5 

84.9

2 

78.2

3 

73.7

4 Teresina            

72  

26.6

7 

26.1

9 

26.2

8 

28.1

3 

186.1

1 

231.3

3 
17.22 21.96 76.2

7 

81.3

5 

67.7

3 

61.3

4 Fortaleza            

21  

26.9

5 

26.5

4 

26.2

8 

27.4

1 

127.5

4 

312.2

5 
85.20 10.86 75.1

3 

80.2

2 

72.2

4 

68.4

3 Natal            

30  

26.8

1 

26.4

3 

25.0

9 

26.5

0 
81.93 208.8

8 

235.3

8 
23.92 74.2

9 

79.3

0 

75.9

3 

71.8

0 João Pessoa            

47  

26.9

2 

26.3

3 

24.8

5 

26.3

5 
82.90 219.9

2 

262.3

4 
34.40 72.9

7 

77.5

7 

78.1

1 

71.5

1 Recife              

4  

26.6

4 

26.0

7 

24.3

2 

25.7

6 
98.99 229.1

6 

291.6

8 
44.52 73.6

7 

79.3

7 

80.5

0 

73.3

0 Maceió            

16  

25.7

1 

25.1

4 

23.1

6 

24.7

4 
71.87 193.3

4 

240.5

9 
50.50 73.3

1 

77.4

5 

77.1

5 

71.2

7 Aracaju              

4  

26.1

9 

25.7

0 

23.7

3 

25.2

9 
62.55 148.5

0 

143.4

4 
49.24 74.8

8 

77.5

8 

75.8

4 

72.4

6 Salvador              

8  

25.9

2 

25.2

1 

23.0

2 

24.8

0 
94.57 206.5

5 

172.7

7 
80.65 76.6

1 

79.8

2 

77.1

1 

74.0

6 

M
id

w
es

t Campo 

Grande 

          

532  

24.2

3 

22.1

9 

19.0

1 

22.4

7 

210.6

2 

121.9

1 
50.00 136.7

5 

80.4

5 

79.7

3 

72.1

0 

73.3

6 Cuiabá           

176  

25.8

7 

24.9

3 

22.7

7 

25.8

8 

221.1

4 

112.1

1 
16.86 113.6

6 

82.9

4 

82.1

7 

72.4

1 

74.3

8 Goiânia           

749  

24.0

8 

23.7

3 

22.0

9 

24.7

7 

251.9

8 

136.9

5 
8.08 131.0

0 

75.9

0 

70.5

9 

53.6

8 

62.7

7 Brasília        

1,171  

21.8

6 

21.1

7 

19.4

8 

22.1

0 

226.1

6 

122.7

2 
10.80 125.3

8 

77.6

9 

73.7

1 

55.6

0 

64.5

5 

S
o
u
th

ea
st

 Belo 

Horizonte 

          

858  

23.2

0 

21.6

8 

18.6

5 

21.9

6 

274.2

8 
90.71 10.06 125.9

4 

75.6

5 

74.4

5 

68.2

1 

68.4

7 Vitória              

3  

25.4

8 

23.9

4 

20.9

0 

23.1

5 

149.4

7 

108.4

2 
52.13 121.8

9 

75.6

5 

77.1

2 

74.2

3 

73.6

5 Rio de 

Janeiro 

             

2  

24.3

5 

22.3

0 

18.6

6 

21.4

2 

176.6

9 

134.2

4 
78.50 139.6

9 

76.9

3 

78.5

2 

75.5

3 

74.5

1 São Paulo           

760  

22.6

5 

20.2

9 

16.6

7 

19.6

5 

240.0

5 

119.2

6 
42.58 121.4

7 

77.0

3 

77.4

1 

73.1

8 

74.1

4 

S
o
u
th

 Curitiba           

934  

21.2

1 

18.0

6 

14.0

0 

17.2

8 

172.0

3 

114.9

4 
72.32 147.5

5 

81.0

9 

83.1

4 

80.3

3 

80.3

1 Florianópol

is 

             

3  

23.4

6 

20.7

7 

15.7

3 

19.5

9 

188.6

6 

137.5

7 
61.64 164.0

6 

78.8

4 

79.5

8 

78.5

6 

77.0

4 Porto 

Alegre 

             

3  

23.5

8 

19.9

1 

14.3

5 

18.9

8 

121.7

2 

106.5

9 

119.7

5 

146.9

8 

74.4

8 

77.5

8 

77.2

8 

73.4

7 Label of the periods: DJF: December, January and February (summer); MAM: March, April and May (fall); JJA: 

June, July and August (winter); and SON: September, October and November (spring). 
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Table 3. Descriptive Variables from SINAN and PNAD, Mean from 2001 to 2010, by the Capital City of Brazilian States  
 

 

Capital cities

 Dengue 

cases per 

100,000 

habitants

Population 

of the city

% women 

in the city

Average 

Age, in 

years

% white 

people and 

asian 

descendents 

in the 

population

Years of 

schooling

Monthly 

real 

income, 

main job

Monthly 

per 

capita 

real 

income

% people 

working 

with 

agriculture

% people 

working at 

industry

% people 

working at 

service 

sector

% housesold 

with piped 

water in at 

least 1 room

% 

household 

which own 

bathroom

Number of 

rooms in 

the 

household

% roof 

material: tile 

or concrete 

slab

% households 

connected to 

the sewage 

system

Porto Velho 323.47    373,973      51.18     27.32  31.62        6.17      954      638     2.09       9.05       19.58      86.65         97.41      5.63        99.16        11.21          

Rio Branco 1,937.11 294,369      51.75     26.67  28.27        5.72      885      656     4.81       6.86       18.89      71.48         93.36      5.13        93.09        50.61          

Manaus 244.61    1,629,011   51.40     26.37  27.71        6.11      781      495     0.97       11.66      19.31      87.02         96.26      5.02        94.16        21.45          

Boa Vista 990.84    243,423      50.28     24.85  24.00        5.65      737      503     3.28       7.14       17.89      91.47         97.16      4.92        99.46        17.65          

Belém 152.01    1,385,389   52.64     29.59  28.45        6.50      718      528     1.45       7.69       23.00      91.20         96.78      5.25        98.27        39.96          

Macapá 545.90    343,934      50.02     25.53  24.37        5.97      794      494     1.80       6.69       17.15      89.03         97.74      5.14        98.06        5.78            

Palmas 950.13    188,026      51.79     25.73  34.28        6.88      981      760     2.56       8.81       20.32      96.99         98.10      5.80        99.15        42.50          

São Luís 124.58    961,183      52.99     27.98  28.89        6.77      774      531     1.39       7.74       20.91      86.99         91.41      5.75        97.59        51.73          

Teresina 312.04    777,789      54.56     29.68  25.34        6.25      669      566     2.79       8.13       24.20      92.11         93.82      6.49        98.99        14.71          

Fortaleza 464.72    2,364,697   53.44     29.48  37.93        6.27      715      534     1.11       10.13      21.88      95.29         98.17      6.07        99.66        57.79          

Natal 905.98    771,770      52.42     30.23  42.11        6.36      768      623     1.47       8.36       23.38      97.08         98.82      6.14        99.71        23.91          

João Pessoa 120.34    663,121      52.65     29.88  42.77        6.10      807      656     1.26       7.86       21.01      97.99         98.97      6.39        99.75        49.12          

Recife 364.93    1,503,350   53.90     31.44  40.26        6.58      863      629     0.94       6.14       21.27      95.16         97.80      6.07        98.27        51.34          

Maceió 521.22    890,085      53.42     28.78  39.73        5.43      762      524     1.13       6.54       19.62      95.61         98.00      5.82        98.22        28.35          

Aracaju 287.26    509,013      52.85     29.82  30.99        6.68      845      672     1.37       7.43       21.80      97.89         99.16      6.72        99.05        80.70          

Salvador 176.09    2,709,711   53.12     30.01  18.83        6.75      768      598     1.03       8.16       24.69      97.58         98.29      5.67        98.49        87.44          

Campo Grande 1,323.64 734,060      51.59     30.66  52.53        6.57      997      767     2.46       9.25       24.77      98.20         99.69      6.26        97.41        24.34          

Cuiabá 429.41    527,589      51.90     30.13  37.27        7.11      1,078   792     2.13       7.71       22.86      93.26         97.03      6.14        96.38        60.93          

Goiânia 1,159.33 1,208,387   52.95     31.04  51.98        7.16      1,052   838     1.47       11.07      25.33      98.45         99.35      6.40        99.33        78.14          

Brasília 102.16    2,362,212   52.81     28.73  43.54        7.11      1,566   1,139   1.05       5.50       20.71      98.35         99.48      6.40        98.99        84.50          

Belo Horizonte 395.93    2,365,030   53.13     32.74  48.82        7.44      1,148   935     1.18       10.04      22.91      99.62         99.69      6.83        99.44        97.45          

Vitória 720.91    311,772      52.81     33.86  49.26        8.38      1,390   1,178   0.87       8.55       21.54      99.28         99.26      7.09        99.22        94.16          

Rio de Janeiro 544.30    6,085,273   53.91     36.03  61.43        7.63      1,241   976     0.84       7.19       22.50      99.38         99.61      5.77        99.37        93.28          

São Paulo 19.96      10,900,000 52.81     32.48  65.69        7.17      1,289   909     0.85       10.60      22.48      99.12         99.40      5.67        99.03        89.30          

Curitiba 3.28       1,743,811   52.31     32.36  82.00        7.67      1,253   1,027   1.35       11.49      23.78      99.48         99.46      6.87        98.65        91.33          

Florianópolis 3.37       390,083      51.77     33.49  88.15        8.24      1,375   1,149   0.84       6.89       21.19      99.30         99.70      6.93        96.66        59.05          

Porto Alegre 2.20       1,413,321   54.08     34.57  80.80        7.95      1,363   1,152   1.07       7.47       22.42      98.61         98.56      6.20        97.20        88.26          
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Table 3 shows some important differences among the Brazilian cities selected for the 

study. Cities of the South region show less dengue incidence than the cities of other regions, but 

have better average socioeconomic indicators, such as household income and infrastructure. The 

next section discusses some of these differences in order to select the cities of the treatment and 

control groups.  

 

4. Empirical Strategy 
 

Brazil’s large extension allows us to observe the effect of climate increase in cities with climates 

ranging from tropical (North) to temperate (South). The Brazilian states with the warmest capital 

cities among those in tropical areas are Maranhão, Piauí, Ceará, Rio Grande do Norte and 

Tocantins2 (capitals are São Luis, Teresina, Fortaleza, Natal and Palmas, respectively).3 The 

temperate cities are Curitiba, Florianópolis and Porto Alegre, the capitals of Paraná, Santa 

Catarina and Rio Grande do Sul. 

Besides the prevailing weather, the prevalence of dengue varies in Brazil between cities 

and time. Figure 3 shows the dengue prevalence rates for three groups of cities: tropical cities, 

temperate cities and the entire country. 

  

                                                 
2
 We chose not to analyze the capital cities of the North region due to their equatorial climate (high temperatures, 

precipitation and humidity). The peculiar climate configuration does not allow proper comparison with other tropical 

cities. The equatorial capital cities are Acre, Amazonas, Roraima, Rondônia, Pará, and Amapá.  
3
 See Appendix A for details about the capital cities of the Brazilian states. 
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Figure 3. Dengue Prevalence Rates for Three Groups of Cities: 

Tropical, Temperate and All Brazil 
 

 
 

Figure 3 indicates the varied distribution of dengue among Brazilian cities. The temperate 

cities are colder than the tropical cities, which decreases mosquitoes’ survival. Therefore, these 

cities have natural protection against dengue, reflected in an average of just 33 cases per 100,000 

inhabitants for 2001 to 2010. On the other hand, the tropical cities are warmer and more humid, 

which is suitable for mosquito reproduction. In this region, dengue prevalence averaged 546 

cases per 100,000 inhabitants over the same period. Figure 3 also indicates that for the three 

groups, dengue prevalence fell to a low point in 2004 and slowly started to increase again until 

2008. In that year, the three groups had different patterns of disease prevalence. In tropical cities, 

the disease prevalence decreased, in temperate ones it increased and in Brazil as a whole there 

was virtually no change.   

The years of 2008 and 2009 were marked by heavy rainfalls in most Brazilian cities. 

Figure 4 presents the cities’ precipitation and average relative humidity pattern change in all 

three capitals of the temperate South: Curitiba, Florianópolis and Porto Alegre. The figure shows 

that rainfall grew in all three capitals in the summer of 2009. However, the rainfall pattern 
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changes had a greater effect on the average relative humidity in Curitiba. In the two other 

capitals in the South, the average humidity did not change as much in that season.  

As discussed above, dengue is a disease whose vector is a mosquito that proliferates more 

easily in humid environments. One of the hypotheses tested in this paper is whether the stronger 

precipitation followed by an elevation in the levels of humidity in the summer of 2009 compared 

to the other years4 had the effect of increasing the prevalence of dengue in Curitiba. 

 

Figure 4. Rainfall in Temperate Cities before and after 2009 

 

Curitiba Florianópolis and Porto Alegre 

 
Rainfall (Accumulated mm per season) 

 
 

Relative Humidity (average % per season) 

  
Note: The horizontal axis corresponds to the annual information on the seasons of the year: summer 

(1), fall (2), winter (3) and spring (4)  

 

Unlike the southern cities, which occupy temperate areas of the country, northeastern 

capitals have tropical weather. Despite the moderating factor of their location on the coast, their 

weather is still hot and humid, providing an ideal environment for dengue proliferation. It is no 

                                                 
4
 Curitiba has already a higher relative humidity than the other temperate cities (probably because of the higher 

altitude). However, in 2008 the relative humidity increased more in Curitiba than in the other temperate cities. 
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coincidence that the region has high prevalence rates of dengue (Figure 2). In 2008, the heavy 

rains that affected most of the country were more intense in warmer tropical capitals (Figure 5), 

respectively São Luis, Teresina, Fortaleza, Natal and Palmas. Figure 5 describes the break in the 

average precipitation pattern of these cities. In the summer of 2008, the mean and variance of the 

rainfall in these capitals increased relative to the previous period. However, in the same season 

of 2008, this phenomenon was not observed so sharply in the other Brazilian northeastern 

capitals like João Pessoa, Recife, Maceió, Aracaju and Salvador.5  

 

Figure 5. Rainfall in Northern Capitals6 (in mm accumulated per season) 
 

      São Luis, Teresina, Natal and Fortaleza João Pessoa, Recife, Maceio, Aracaju and Salvador 

 
 

 

 

The second hypothesis tested here is whether this increase in precipitation in areas where 

the conditions for mosquito survival were already ideal could have reduced the vector population 

and hence the disease prevalence in the respective cities.   

To summarize, observing the average climate evolution per season in Brazil for the 

period 2001-2010, the rainfall in the tropical cities in the summer of 2008 was above the 

historical average until 2007. Our hypothesis is that such high precipitation might have washed 

away standing water accumulations in places where very high precipitation occurred, reducing 

the number of larvae and therefore reducing the mosquito population and lowering the dengue 

prevalence in some tropical cities. On the other hand, in temperate cities or tropical cities with 

less accumulated rain in normal conditions, the higher humidity and precipitation might have 

                                                 
5
 See Table A.1 in Appendix A for details of the Brazilian states and their capital cities. 

6
 The negative values correspond to the minimum confidence intervals calculated for low values of observed 

rainfall.  
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increased survival of mosquitoes, raising the risk of dengue in those regions in the year 

highlighted by the figures. 

Note that in the summer of the years of 2008 and 2009 there were climatic breaks in 

many Brazilian cities (change in relative humidity in Curitiba and a change in rainfall levels in 

some tropical cities). We use those breaks in order to identify if the dengue prevalence change in 

those years could be associated with the change in climatic conditions.  

Based on these hypotheses, recall that the synthetic group for each city is constructed as a 

weighted average of potential control states, with weights chosen so that the resulting synthetic 

cities best reproduce the values of a set of predictors of dengue before the climatic change. 

Because the synthetic group is meant to reproduce the dengue incidence that would have been 

observed for each city in the absence of temperature increase, we discarded from the sample 

Palmas, São Luis, Teresina, Fortaleza, Natal and Curitiba and constructed synthetic controls for 

them.  

Using the techniques described in Section 3, a synthetic model was designed such that it 

mirrors the values of the predictors of dengue in Brazil’s warmest and coldest cities before the 

temperature increase. The effect of increases in temperature on dengue is the difference in 

dengue case levels between each city and the corresponding synthetic versions in the years after 

the temperature increase. Placebo studies confirmed that the estimated effects for each city are 

unusually large relative to the distribution of the estimate obtained when the same analysis is 

applied to all cities in the sample. 

 

5. Results  
 

As explained above, from the convex combination of capital cities in Brazil with the greatest 

resemblance in terms of dengue prevalence predictors, we constructed the synthetic controls for 

five capitals: São Luis, Teresina, Fortaleza, Natal and Curitiba. To construct the synthetic control 

model, the full sample was not used; instead, we observe only the impact of the summer weather 

on the average rate of dengue in the first two seasons (summer and fall). Two reasons led us to 

proceed in this way: first, the fact that about 90 percent of dengue cases occur in the first half of 

the year (summer and fall seasons) in Brazil; and second, the fact that the summer weather 

determines the main conditions for mosquitoes’ reproduction. The above reasons led us to 

conclude that using the annual average rates of dengue could have biased our results.  
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Table 4 below highlights an important feature of synthetic control estimators. As 

described in Abadie et al. (2010), similar to matching estimators, the synthetic control method 

forces demonstration of the affinity between the cities exposed to the intervention of interest and 

the cities in the sample. As suggested by King and Zheng (2006), the synthetic control method 

safeguards against estimation of counterfactuals that fall far outside the convex hull of the data. 

Table 4 shows that for the variables used to reproduce the dengue pattern among the cities, the 

treated and synthetic control are close to each other. Per capita income, temperature and 

humidity are the variables that best adjusted the synthetic control for the majority of the cities. 

 

Table 4. Dengue Prevalence Predictor Means 

for São Luís, Teresina, Natal, Fortaleza and Curitiba 
 

  São Luís Teresina Natal Fortaleza Curitiba 

  Treated Synthetic  Treated Synthetic  Treated Synthetic  Treated Synthetic  Treated Synthetic  

Ln(income) 6.230 6.235 6.285 6.413 6.245 6.249 6.388 6.528 6.806 6.903 

Rel. humid. 81.635 81.088 76.180 77.583 77.472 80.036 77.156 76.989 21.346 24.452 

Temperature 27.147 27.090 27.378 26.654 27.303 27.211 27.322 27.026   

Dengue (2001)           

Dengue (2002) 16.945 172.201 447.102 449.080 136.633 232.263     

Dengue (2003)   386.606 381.317 365.670 293.753 1013.60 919.558   

Dengue (2004) 5.300 40.103         

Dengue (2005) 148.793 87.735 6.180 35.561   59.468 114.639   

Dengue (2006)           

Dengue (2007) 249.298 218.567 298.881 300.321     313.295 287.956 4.371 4.268 

    Note: Dengue corresponds to the dengue prevalence rate per 100,000 inhabitants in the year. 

 

Table 5 displays the weights of each control city in the synthetic capital. The weights 

indicate that the dengue prevalence trend in the period before the rainfall pattern break is best 

reproduced by different cities. The number of synthetic controls depends on the capital that is 

analyzed, and varies between two and seven cities. 
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Table 5. Weights in the Synthetic Capitals 

  São Luís Teresina Natal Fortaleza Curitiba 

Porto Velho 0 0 0 0 0 

Rio Branco 0.631 0.174 0.568 0.262 0 

Manaus 0.215 0 0.238 0.301 0 

Boa Vista 0 0 0 0 0 

Belém 0 0 0 0 0 

Macapá  0 0 0 0 

João Pessoa 0.091 0.077 0.124 0 0 

Recife 0 0 0 0 0 

Maceió 0 0.31 0 0 0 

Aracaju 0 0.222 0 0 0 

Salvador 0 0.046 0 0 0 

Belo Horizonte 0 0 0 0 0 

Vitória 0 0.134 0.069 0.397 0 

Rio de Janeiro 0 0 0 0 0 

São Paulo 0 0 0 0 0 

Florianópolis 0.038 0 0 0 0.888 

Porto Alegre 0 0 0 0 0.112 

Mato Grosso do Sul 0.026 0.038 0 0.04 0 

Mato Grosso 0 0 0 0 0 

Goiás 0 0 0 0 0 

Brasília (Federal District) 0 0 0 0 0 

 

 

Figure 6 displays dengue prevalence rate for the cities and their respective synthetic 

counterparts during the period 2001-2010, namely São Luis, Teresina, Fortaleza, Natal and 

Curitiba. Our estimates of the effect of rainfall pattern break on dengue rates are the difference 

between dengue rates in each capital and in its respective synthetic version after the break. In the 

pattern break, the two lines begin to diverge noticeably for all cities. While dengue prevalence in 

the synthetic capitals continued on a moderate downward trend, the real capitals experienced a 

sharp decline (São Luis and Teresina), or rise (Natal, Fortaleza and Curitiba). According to 

Abadie et al. (2010), the discrepancy between the two lines suggests a decrease (increase) caused 

by the rainfall break on dengue prevalence in São Luis and Teresina (Natal, Fortaleza and 

Curitiba). 

For the entire first six months of the 2007-2008 period in tropical treated cities, dengue 

cases per 100,000 inhabitants increase by an average of almost 261 cases. The largest increases 

happened in Fortaleza and Natal, with rises of 731 and 699, respectively. However, it was 

possible to observe a reduction at two other cities, São Luis and Teresina, with 103 and 76 fewer 

cases per 100,000 inhabitants, respectively. The different sign of the effect can be explained by 
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the historical different rainfall observed in those cities, as São Luis and Teresina present greater 

historical rainfall in summer when compared to Natal and Fortaleza. 

 

Figure 6. Trends in Dengue Cases, Capitals vs. Synthetic Capitals 

São Luis vs. synthetic São Luis Teresina vs. synthetic Teresina. 

  
Natal vs. Synthetic Natal Fortaleza vs. synthetic Fortaleza 

  

 
Curitiba vs. synthetic Curitiba  

 

 

 

 

In temperate cities the dengue cases per 100,000 inhabitants increased from 2008 to 2009 

by 2 cases. However, this increase in Curitiba was almost 3 cases per 100,000 inhabitants. Table 

6 below compares these real results with those predicted for the synthetic cities and then 

analyzes the impact of climate change.    
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Table 6. Accumulated Summer Rainfall: 2001-2010 

Treated capitals Accumulated summer rainfall 2001-2010 (mm) 

São Luís 207.38 

Teresina 186.11 

Natal 127.53 

Fortaleza 81.93 

 

 

In order to assess the robustness of our results, we included additional predictors such as 

log per capita wage income, average years of education, average number of rooms in homes, 

percentage of households with sewage disposal, percentage with piped water and number of 

bedrooms in homes. The results remained virtually unaffected regardless of which and how 

many predictor variables we included. The lists of predictors used for robustness checks are 

described in Table 4. 

 

6. Discussion  
 

The results suggest that climate affected dengue’s prevalence for the cities where a climatic 

break occurred. However, such impacts were not homogeneous among the tropical cities. For 

those with less historical precipitation—Fortaleza and Natal—comparing these cities with their 

synthetics, the increase of rainfall in 2008 increased the rates of dengue by 36 percent and 22 

percent, respectively. The projection for synthetic Fortaleza was 343 cases per 100,000 

inhabitants in 2008, while the observed rate was 984. Likewise, the projection for synthetic Natal 

was 382 cases 100,000 inhabitants in 2008 against an observed rate of 1,012. We are arguing that 

the greater than expected increase of precipitation in these two cities in relation to their synthetic 

controls caused the dengue increase. 

For the two cities with tropical climate but higher historical precipitation, São Luis and 

Teresina, the impact of higher rainfall was considerably smaller. In São Luis, the rate of dengue 

declined from 294 per 100,000 people in 2007 to 108 in 2008, a 56 percent drop, while in 

Teresina, the rate fell from 299 in 2007 to 157 in 2008, a decrease of only 47 percent. 

Finally, in Curitiba, a city located in southern Brazil, the increase of rainfall caused an 

increase in humidity and generated more dengue cases compared to its synthetic placebo (Figure 

6). The temperate climate in the south of the country provides natural protection against dengue. 

Nevertheless, climate is expected to get warmer and more humid in the southern region of the 
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country. This change might enable the existence of the climatic conditions that are necessary for 

mosquito proliferation and, therefore, increased dengue cases. In 2008, the number of dengue 

cases in the city was 1.8 per 100,000 inhabitants, while in 2009 this number rose to 4.1. 

However, the number of projected cases for the synthetic was 1.4.  

The results clearly indicate the importance of climate on the prevalence of dengue. There 

is an emerging consensus on how to tackle a potential increase of dengue in new areas. 

Developing accurate models and surveillance to predict or detect disease outbreaks is central to 

this. Such systems will require both climate and disease data if they are to be rigorous enough to 

be reliable. 

In terms of public policy, these results must be seen as a warning call to policymakers 

about the moment to implement strategies to combat the disease. It is important to keep in mind 

that when high rainfall is expected, such phenomena will have a direct impact on policy aims. 

 

7. Climate Change Forecast 
 

7.1 Forecasting Strategy 
 

Based on the work from the previous sections, we now analyze the potential impacts of climate 

change on the number of expected cases of disease in Brazil to 2041-2070. To do so, we divide 

this section into two parts: we first estimate the coefficients that identify the impact of climate on 

the prevalence of dengue, and then we fit scenarios with different climate conditions using those 

estimated parameters, to project the number of cases in the country into the future. 

The first step consists of estimating the effect of climate parameters—temperature,  

rainfall and humidity—on the number of dengue cases per 100,000 inhabitants. The coefficients 

used in the prediction were derived from the estimation by OLS of the model described below:7 
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                                                                                                                                             (6) 

 

Here the dependent variable is the logarithm of dengue prevalence rate per 100,000 inhabitants, 

which varies by year (t) and capital city (k). The explanatory variables are the interactions 

                                                 
7
 The OLS estimator with dummies for state and year corresponding to the fixed effect estimator (Cameron and 

Trivedi, 2005). 
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between the logarithm of the three meteorological parameters, which vary by season (j), year (t) 

and capital city (k). The socioeconomics characteristics (m) are per capita income, per capita 

wage, years of education, number of bathrooms, quality of the roof, access to sewage system, 

access to piped water, and dummies (j) for each season of the year and dummies (r) for Brazil’s 

five regions. The database used here was the same as described in Section 4.  The results are 

described in Table 7 below. 

 

Table 7. Dependent Variable: Dengue Growth Rates for Brazilian States by Season, 

2001-2010 
 

Independent Variables  Estimated Coefficient   

Ln (Accumulated rain - Summer) 0.466 *** 

Ln (Accumulated rain - Fall) -0.089  

Ln (Accumulated rain - Winter) 0.282 *** 

Ln (Accumulated rain - Spring) -0.201 * 

Ln (Avg. temperature - Summer) 2.255  

Ln (Avg. temperature - Fall) 4.319 *** 

Ln (Avg. temperature - Winter) 2.893 *** 

Ln (Avg. temperature - Spring) 1.578 * 

Ln (Relative humidity - Summer) 0.17  

Ln (Relative humidity - Fall) -0.596  

Ln (Relative humidity - Winter) -0.069  

Ln (Relative humidity - Spring) 1.214 * 

Head of household income  2.781 *** 

Total per capita income -3.284 *** 

Head of household years of education -0.255  

Number of bathrooms 1.803  

Number of rooms 0.399 *** 

Dummy for safe roof 5.892 *** 

Dummy for access to sewage system -0.308  

Dummy for access to piped water -1.311  

Constant -7.447   

Time dummies yes  

Regional dummies yes   

R-squared 0.513   

Number of observations 1078   
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The climate information was calculated based on meteorological data provided by the 

Center for Earth System Science (CCST).8 The dataset provided by CCST contains monthly 

meteorological parameters: level of rainfall, temperature and average humidity for Brazilian 

municipalities between 2041 to 2070. The information was compiled considering the average 

scenario (Midi). 

The climate change forecast used was generated from the data set boundaries of the 

global model (HadCM3), from the Met Office-Hadley Centre of the United Kingdom, A1B 

emission scenario for the entire area of South America considering 2041-2070 (the three 

scenarios considered indicate the level of human activity that influences climate: Low; Middle, 

or Midi; and High). The variables used as the average of the expected extreme weather events 

were calculated similarly to the independent variables of the models. The expected effects of 

climate change on dengue rates are reported in Table 8 and Figure 7. 

 

Table 8. Climate Change Estimated Effect on Dengue Rates by Region, 2041-2070, 

Summer Scenario 
 

Region Dengue cases per 100,000 inhabitants 
Incidence 

Dengue growth 

rates 

  Current Projected 

  High 

North 150.229 137.130 -13.099 -1.107 

Northeast 84.163 146.826 62.663 0.355 

Midwest 94.874 248.163 153.289 0.704 

Southeast 52.292 138.658 86.366 0.786 

South 4.583 15.428 10.845 0.852 

  Medium 

North 150.229 137.129 -13.100 -1.113 

Northeast 84.163 147.702 63.539 0.360 

Midwest 94.874 246.117 151.243 0.700 

Southeast 52.292 142.179 89.887 0.800 

South 4.583 15.183 10.600 0.850 

  Low 

North 150.229 104.439 -45.790 -1.461 

Northeast 84.163 121.279 37.116 0.196 

Midwest 94.874 186.596 91.722 0.512 

Southeast 52.292 105.429 53.137 0.574 

South 4.583 11.224 6.641 0.615 

 

                                                 
8
 Available at http://dadosclima.ccst.inpe.br/. 
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Table 7 describes the forecast dengue prevalence rate per 100,000 inhabitants for the five 

Brazilian regions North, Northeast, South and Southeast, between 2041 and 2070. The results 

suggest that regardless of the scenario considered for climate change (high, medium or low), 

dengue is expected to increase in four of the five regions. The North region was the only one that 

showed a reduction in the prevalence of dengue in all scenarios. Between 2001 and 2010, the 

largest number of cases was observed in the North region (150 cases per 100,000 inhabitants). 

However, for the period 2041-2070, a reduction in prevalence to 137 cases per 100,000 

inhabitants is projected in the medium and high scenarios, which corresponds to a negative 

growth rate of 1.1 percent in the region. In the scenario of low climate sensitivity, this reduction 

is even greater: the prevalence of dengue decreases to 104 cases per 100,000 inhabitants, 

corresponding to a growth rate of -1.46 percent. 

Figure 7 shows that the northern states where there are the greatest reductions in 

prevalence rates of dengue due to climate change are Amapá, Amazonas and Rondônia, with 

respective percentages of -2.7 percent, -1.3 percent and -1.2 percent. 

 In relative terms, the biggest rise in dengue prevalence will be observed in the cities of 

the South, where the forecasts suggest an average rise in the number of cases exceeding 200 

percent for the high and medium scenarios and somewhere around 150 percent for the low 

scenario (Table 6). Nowadays, in absolute terms, the lowest number of cases is also observed in 

the states of this region. The state that will present the largest growth in the number of dengue 

cases is Paraná, where the expected growth rate is around 1 percent (Figure 7), for all scenarios. 

The Northeast region has historically high rates of dengue. Climate change might affect 

cities of this region differently. In the states of Maranhão, Piauí and Pernambuco, there will be 

lower growth rates of the disease in all scenarios, close to 0.5 percent (Figure 7). In the scenarios 

of high and medium climate change, the states of Ceará, Rio Grande do Norte, Paraíba, Alagoas, 

Sergipe and Bahia will present growth rates in disease prevalence of around 1 percent. With low 

climate change in the state of Ceará, the growth rate of the disease would be reduced to 

something closer to 0.6 percent. 

In the Southeast and Midwest regions, the highest growth rates expected are observed in 

the Federal District, São Paulo and Minas Gerais, respectively: 1.06 percent, 1.02 percent and 
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0.96 percent. In these states,9 the number of cases of dengue is expected to rise to around 140, 75 

and 126 cases per 100,000 for the high and medium scenarios. For the scenario with low climate 

change, the number of dengue cases in these states is expected to rise to 90, 80 and 45 cases per 

100,000, respectively, due to climate change. 

 

Figure 7. Climate Change Estimate Effect on Dengue Rates Growth from 2041-2070 

by Summer Scenarios 
 

High Midi 

 
  

 

Low 
 

 
  

                                                 
9
 The Federal District, location of the nation’s capital, Brasília, is not strictly speaking a state, but it is treated as 

such here. 
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In this way, this paper contributes by linking two relevant agendas: finding ways to 

manage the climate-related risks of today and to improve the understanding of risks of tomorrow. 

The results suggest that, as long-term temperatures increase, the southern and central southern 

states will become much more vulnerable to dengue, in accordance with the findings of Pereda 

(2012).  

 

7.2 Final Remarks 
 

This paper aims to contribute to the measurement of climate impacts on health. Thus, dengue 

fever, the most relevant infectious disease in Brazil, is analyzed. We tested, and did not reject, 

the hypothesis that climate conditions affect the transmission of dengue fever in the country by 

using a synthetic control methodology.  

Thus, it is relevant to discuss potential adaptation instruments. Pereda (2012) found that 

expenditures for epidemiological surveillance are ineffective due to the delay in spending the 

funds allocated. The current local system of monitoring dengue in Brazil is based on the 

observation of dengue cases in January and February, with occasional interventions by spraying 

insecticides to kill mosquitoes and their larvae where an increase in the number of cases is 

detected. This procedure, besides being more expensive, is not effective in reducing dengue 

locally. Moreover, those expenditures are also made at the municipal level, not controlling for 

infected mosquitoes that cross municipal borders. Therefore, the author suggests that integrated 

actions are needed to control the spread of dengue fever during epidemics.  

When it comes to this paper’s contributions, the use of a synthetic control to identify the 

climate’s influence on dengue can be highlighted as the main contribution. Future research 

regarding dengue fever analysis could involve fieldwork, which could better identify inequality 

in sanitation infrastructure provision inside cities.  
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Appendix 

 

Figure A.1. Brazilian States and Capital Cities 

 

 
          Source: http://www.brazilmycountry.com/brazil-map/map-of-brazil-states/. 
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