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Food Security Impact of Agricultural 
Technology Adoption under Climate 
Change: Micro-evidence from Niger 
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Abstract 

We assess farmers' incentives and the conditioning factors that hinder or promote 

adoption of agricultural technologies under climate risk and evaluate its impact on food 

security in Niger. We distinguish between (i) exposure to climatic disruptions, (ii) bio-

physical sensitivity to such disruptions, (iii) household adaptive capacity in terms of 

farmers’ ability to prepare and adjust to the resulting stress, and, finally, (iv) system-level 

adaptive capacity that serve as enabling factors for household-level adaptation. We 

employ multivariate probit and instrumental variable techniques to model the selection 

decisions and its impact. The results clearly indicate that while the use of modern inputs 

and organic fertilizers significantly improves crop productivity, results are unclear for the 

impact of crop residues. Moreover, factors driving modern input use are different than 

those of crop residues and organic fertilizer which can be characterized at low investment 

capital requirements, higher labour requirements and longer time for results versus 

modern inputs which can be characterized as higher investment capital requirements, 

less labour requirement and shorter time for returns. Exposure to climatic stress and bio-

physical factors are identified as key factors that hinder or accelerate adoption. Results 

also show that greater climate variability as represented by the coefficient of variation of 

rainfall and temperature and recent climate shocks as represented by average rainfall 

shortfall increases use of risk-reducing inputs such as crop residue, but reduce the use of 

modern inputs. In addition, the key role of system-level adaptive capacity in governing 

input use decision. Results presented have implications for understanding and 

overcoming barriers to selection for each practice, distinguishing structural aspects such 

as exposure and sensitivity from potential interventions at the household or system levels 

linked to adaptive capacity. 
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1. Introduction 

 
Climate change and land degradation hinder agricultural productivity and the ability of the 
agricultural sector to feed the world’s increasing population. This issue is particularly felt in 
Niger, where the agriculture sector is characterised by land scarcity and unstable rainfall. A 
recent mapping of vulnerability and poverty in Africa listed Niger as one of the countries 
that are both most vulnerable to climate change and with the least capacity to respond 
(Orindi et al., 2006; Stige et al., 2006). Given that agricultural production remains the main 
source of income for most rural communities in Niger, the increased risk of crop failure 
associated with increased frequency of extreme events poses a major threat to food 
security and poverty reduction. In view of this impending climate change threat upon the 
poor, it is critical to have a deeper understanding of the household adaptation strategies 
and targeted measures that could protect and improve the livelihoods of the poor and 
ensure food security (Bradshaw et al., 2004). 
 
Adaptation to current or expected climate variability and changing climate conditions 
involves adjustment in natural or human systems in response to actual or expected climate 
stimuli or their effects, which moderates harm or exploits beneficial opportunities (IPCC 
2001). These may include both on and off farm activities. At the farm level, there are a 
wide range of strategies that may contribute to adaptation which include modifying planting 
times and changing to varieties resistant to heat and drought (Phiri and Saka, 2008); 
development and adoption of new cultivars (Eckhardt et al., 2009); changing the farm 
portfolio of crops and livestock (Howden et al., 2007); improved soil and water 
management practices including conservation agriculture (Kurukulasuriya and Rosenthal, 
2003; McCarthy et al., 2011); increasing regional farm diversity (Reidsma and Ewert, 
2008) and shifting to non-farm livelihood sources (Morton, 2007). Which of these actually 
contribute to adaptation depends on the locally specific effects climate change has and will 
have, as well as agro-ecological conditions and socio-economic factors such as market 
development. Adaptation also depends on the farmer’s capacity and incentives to 
undertake adjustments in farming practices, e.g. their adaptive capacity.  
 
Despite growing policy interest in adaptation, and increasing resources dedicated to 
promoting a range of sustainable land management and productivity enhancing practices 
in many regions, the level of use of these practices in Niger is generally quite low, perhaps 
leading to stagnant or worsening yields and continuing land degradation. One question 
that arises is whether these practices are actually effective adaptation strategies in the 
specific circumstances of Nigerien farmers – e.g. their adaptation effectiveness. A second 
question is how household and system-level adaptive capacity, or lack thereof, affects the 
selection of farm practices with adaptation benefit.  
  
Given the scarce evidence available for Niger and the Sahel area in general, this paper 
generates empirical evidence on farmers' incentives and the conditioning factors that 
hinder or accelerate the use of a set of potentially risk-reducing climate-smart agricultural 
practices (organic fertilizers, crop residues, legume intercropping, soil and water 
conservation practices (SWC)) that are high priorities in the Nigerien National Agricultural 
Plan. They are considered effective in terms of increasing resilience of agricultural systems 
and reducing exposure to climate shocks, and in this way contribute to adaptation. We also 
consider two practices that are aimed primarily at improving average yields, though with 
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uncertain benefits in terms of adapting to climate change and in reducing risk to current 
climate stresses (improved varieties and use of inorganic fertilizers).3 And a second 
objective is to understand which practices have the potential to boost agricultural 
productivity and increase incomes under varying climate conditions. 
 
The question this paper aims to address contributes to the growing literature on adaptation 
measures (e.g., Pender and Gebremedhin, 2007; Kassie et al., 2010, 2013; Tekleword et 
al., 2013; Di Falco et al., 2011; Di Falco and Veronesi, 2012; Deressa and Hassen, 2010) 
and also contributes to the literature on quantification of vulnerability and adaptive capacity 
(Adger et al., 2004; Smit and Wandel, 2006; Adger, 2006; Gallopin, 2006; Fussel, 2007 & 
2009; Engle, 2009; Panda et al., 2013). Our contribution to the existing literature is 
fourfold: firstly our analysis uses a comprehensive large national representative plot-level 
survey with rich socio-economic information, merged with geo-referenced climatic 
information. This allows us to evaluate the role of bio-physical and climatic variables in 
determining farmers’ input use decisions, and consequently, the impact on crop 
productivity and profitability.  
 
We argue that climate variability and other shifts in recent climate patterns are major 
determinants of farm practice choices, extending the literature which examines the effects 
of weather shocks using the level of rainfall or deviation from its mean on productivity. 
While acknowledging the important role of weather shocks, we pay particular attention to 
long term climate variability as a proxy for expectations about future uncertainty. Second, 
we explicitly account for the possibility of farmers’ choosing a mix of practices (Teklewold 
et al., 2013). In order to model simultaneous and correlated farming practice selection 
decisions we used a method that takes into account the potential interdependence 
between different practices. Third, we estimate the causal impact of use of these practices 
on productivity using instrumental variables techniques (IV) improved using the Lewbel 
(2012) method, as well as conditional recursive mixed process (CMP) estimators as 
proposed by Roodman (2011), which take into account both simultaneity and endogeneity 
risks, and produce consistent estimates for recursive systems in which all endogenous 
variables appear on the right-hand-side as observed. Finally, given the absence of 
evidence on the use and impact of climate-smart farming practices from the Sahel area at 
large and from Niger in particular, which is largely attributed to the lack of reliable data 
from this country, our study itself adds great value in filling this gap in the existing 
literature.4  
The paper is structured as follows. In section 2 we provide a detailed review of the existing 
literature with a specific focus on the existing evidence for Sub-Saharan Africa, whereas in 
section 3 we describe the data used and provide some descriptive results. In section 4 we 
describe the empirical methodology used. Section 5 presents the empirical results, and in 
section 6 we draw conclusions and provide policy implications.   

 
 

 

3
 The choice of the set of agricultural practices considered in this paper is mainly driven by the 

availability of data - the use of organic and inorganic fertilizer, crop residue, improved seed as well 
as anti-erosion measures are very well documented in the survey. The survey questionnaire also 
provides a rich section on tree plantation, but unfortunately the response rate in this section was 
very low, which made this set of information not usable. 
4
 The only studies coming from Niger or from the Sahel area that we are aware of are Baidun-

Forson (1994) and Baidun-Forson (1999). 
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2. Literature review 

We attempt here to link two important strands of literature that have developed separately 

but that are key in discussing adaptation in smallholder agricultural systems; namely that 

on risk and adoption of agricultural technologies based in the economic tradition, and that 

on vulnerability and adaptive capacity as presented from different disciplinary perspectives 

in the climate change literature. The results presented in the paper rely on techniques and 

theory of the former, and on the context and narrative of the latter. We link the two strands 

to provide new insights on practical aspects of adaptive capacity on the ground and how it 

links to farmers’ decisions under climate risk.  

 

Starting with the impact of risk on practice selection, there is a large body of literature on 

the theoretical and empirical impacts of production risk, as well as on the supply and 

demand side constraints on farmers’ ex ante production technology choices (e.g., 

Fafchamps, 1999, 1992; Chavas and Holt 1996; Just and Candler, 1985, Sadoulet and de 

Janvry, 1995; Kassie et al., 2008; Di Falco et al., 2011; Di Falco et al., 2014). This 

literature indicates that there are several barriers to technology use, ranging from lack of 

insurance and limited credit access to price risk, and mainly focuses on the impact of 

production risk on overall output. Pope and Kramer (1979) considered inputs that could be 

both risk-increasing and risk-decreasing. In general, the use of risk-decreasing inputs 

increases where producers are more risk-averse or are in more risk-prone environments, 

which is important in the context of climate change. In particular, many sustainable land 

management (SLM) practices are risk-decreasing, so that the increased frequency of 

extreme weather events should favour adoption of SLM.  

 

There are few empirical studies that explicitly evaluate the impact of climate risk on the 

adoption of SLM practices or other input choices (e.g. Kassie et al., 2008; Arslan et al. 

(2013); Heltberg and Tarp, 2002; Deressa et al., 2011; Di Falco and Veronesi, 2012; Di 

Falco et al., 2014; Deschenes and Greenstone, 2007; Seo and Mendelsohn, 2008; 

Kurukulasuriya and Mendelsohn, 2008; Seo and Mendelsohn, 2008; Wang et al., 2010). 

Arslan et al. (2013) provided evidence of a positive correlation between rainfall variability 

and the selection of  of SLM type practices. Kassie et al. (2008) found that production risk 

deters adoption of fertilizer, but has no effect on the conservation agriculture adoption 

decision. Heltberg and Tarp (2002) found that farmers located in regions with greater 

exposure to extreme climate events were less likely to engage in market transactions, 

implying a greater emphasis on meeting subsistence needs with own production. Aside 

from risk, several supply and demand side constraints have also been identified to account 

for the use of SLM practices, including high up-front costs but delayed benefits (Sylwester, 

2004), credit and insurance market imperfections (Carter and Barrett, 2006), tenure 

insecurity (Pender and Gebremedhin, 2007), household endowments of physical and 

human capital (Pender and Fafchamps, 2005), agricultural extension and market access 

(Holden and Shiferaw,  2004; Teklewold et al., 2013b; Arslan et al., 2013) and limited off-

farm opportunities (Pender and Gebremedhin, 2007). McCarthy et al. (2011) synthesized 

recent empirical literature on factors affecting the use of SLM practices, with a strong focus 

on sub-Saharan Africa.  

Turning to the literature on adaptive capacity, the concepts of exposure and sensitivity, as 

well as scale of adaptive capacity, are key. The above literature is also very relevant to the 

ongoing work in the global climate change community in the area of adaptation to climate 
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change, and specifically to the debate on vulnerability, resilience, and adaptive capacity. In 

the vulnerability literature, Fussel (2007) nicely summarizes the different approaches to 

vulnerability in different fields, and presents a framework distinguishing between aspects of 

vulnerability that are internal and external to the system considered, such as that between 

the socio-economic and the bio-physical. Adaptive capacity expresses the ability of a 

system to prepare for stresses and changes in advance or adjust and respond to the 

effects caused by the stresses, thereby modulating the sensitivity of the system so as to 

decrease vulnerability (Smit et al., 2001).5   

 

Engle (2011) makes an important distinction between characterizing adaptive capacity and 

measuring it. He highlights how most studies have focused on characterizing adaptive 

capacity, intended as assessments based on predetermined system attributes that are 

assumed to increase adaptive capacity. The use of aggregated indices that assess 

adaptive capacity based on assumptions about its determinants fall into this category (e.g. 

Brooks et al., 2005; Patt et al, 2010). The alternative is to directly assess the adaptive 

capacity in a system, so as to understand what factors determine this capacity. An 

example of the latter approach is provided by Panda et al (2013) where the propensity to 

adopt farming practices that maintain higher yields is analysed, highlighting the importance 

of risk-reducing options such as crop insurance in determining adaptive capacity. It is not 

unusual in the adaptation literature to assume that engaging in agricultural practices or 

technologies that increase incomes, and more specifically yields, represents a measure of 

adaptive capacity (e.g., Di Falco et al., 2011; Kassie et al., 2008; Branca et al. 2011). In 

this paper we take a similar view on the yield impacts of farm practice selection, 

hypothesizing that the selection of practices associated with higher productivity is 

indication of adaptive capacity. 

 

  

 
 

 

5
 In this paper we focus on the link between vulnerability and adaptive capacity; however, there is 

also a focus on resilience to illustrate the characteristics of systems that achieve a desirable state in 
the face of change, being applied to socio-ecological systems (Folke, 2006; Janssen et al., 2006). 
Adaptive capacity in the resilience literature (or adaptability) is the capacity of actors in the system 
to manage and influence resilience (Walker et al. 2004). Hence, adaptive capacity is a concept 
shared by the resilience and vulnerability strands of literature (Engle, 2011); however, for empirical 
applications we find the vulnerability framework to be more informative. 
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3. Data description and descriptive statistics 

3.1 Data 

We use two main sources of data in our analysis: socio-economic data from the Niger 

National Survey of Household Living Conditions and Agriculture (ECVMA) and historical 

data on rainfall and temperature from the National Oceanic and Atmospheric 

Administration (NOAA) and the European Centre for Medium Range Weather Forecasts 

(ECVMA), respectively.  

 

The primary source of our socio-economic data is the Niger ECVMA survey which was 

conducted from July to December 2011 and implemented by the Niger Institut National de 

la Statistique (INS) in collaboration with the World Bank. The data is representative at the 

national, (major) regional, and urban/rural-level. The household sample is drawn from all 8 

regions of the country with the exception of certain strata in Arlit (Agadez Region) because 

of difficulties in reaching the location. The sample was chosen through a random two 

stages process, at the end of which 270 enumeration areas (EA) and 4074 households 

were drawn. It was designed to provide information on various aspects of household 

welfare in Niger such as household composition and characteristics, health, wage 

employment, and income sources, as well as data on consumption, food security, nonfarm 

enterprises, and durable and agricultural asset ownership, among other topics.6 For 

households that were involved in agricultural activities, data was also collected on land 

tenure, labour and non-labour input use, and crop cultivation and production at the plot 

level. Data was also collected at community level to capture determinants of system-level 

adaptive capacity in terms of enabling factors for adaptation, which include issues related 

to collective action, access to information, and to infrastructure including market and roads, 

among others. 

 

The ECVMA survey data also recorded geo-referenced household and EA level Latitude 

and Longitude coordinates using handheld global positioning system (GPS) devices, which 

creates the possibility of linking household level data with geo-referenced climate and soil 

data. We extracted time series indicators such as historical rainfall and temperature at the 

highest resolution and longest time period publicly available at the time of writing. Rainfall 

data are extracted from the Africa Rainfall Climatology version 2 (ARC2) of the National 

Oceanic and Atmospheric Administration’s Climate Prediction Center (NOAA-CPC) for 

each dekad (i.e. 10 day intervals) covering the period of 1983-2012. ARC2 data are based 

on the latest estimation techniques on a daily basis and have a spatial resolution of 0.1 

degrees (~10km).7 Temperature data are surface temperature measurements at each 

 
 

 

6
 We restricted the sample to rural households involved in farming activities during the rainy season. 

At the end of the cleaning process our sample was composed 5340 plots with 1938 households 
(see table 1) 
7
 Average of a 10 km radius buffer of decadal sum of daily values per each enumeration area 

centroid. For more details on  ARC2  algorithms see: 
http://www.cpc.ncep.noaa.gov/products/fews/AFR_CLIM/AMS_ARC2a.pdf   

http://www.cpc.ncep.noaa.gov/products/fews/AFR_CLIM/AMS_ARC2a.pdf
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dekad for the period of 1989-2010 obtained from the European Centre for Medium-Range 

Weather Forecasts (ECMWF) at a spatial resolution of 0.25 degrees.8  

 

These data are then merged with the ECVMA data at the EA level (270 EAs in ECVMA) to 

create a set of exposure to climate variables to represent the short and long term 

variations both within- and across-years in rainfall and temperature that are hypothesized 

to affect adoption of agricultural practices and agricultural productivity based on the 

agronomy, climate and economics literature. Some of the exposure variables created 

include rainfall during the growing season, long-term mean rainfall and the coefficient of 

variation in rainfall, as well as mean and maximum temperature and the coefficient of 

variation of maximum temperature (1983-2011). Taking the annual measure of main 

cropping season rainfall at each EA level, we calculate the coefficient of variation for 

rainfall (CV), measured as the standard deviation divided by the mean for the respective 

periods: 1983-2011, which is scale invariant, thereby providing a comparable measure of 

variation for households that may have very different rainfall levels.  

 

Table 1: Description of the sample households by land use type 

 

We also extracted EA level information on soil nutrient availability from the Harmonized 

World Soil database (HWSD) to control for the effects of bio-physical characteristics. The 

HWSD has a resolution of 30 arc-seconds and combines existing regional and national 

updates of soil information worldwide.9 The HWSD is based on a spatial layer with Soil 

Mapping Units (SMU) linked to a Microsoft Access .mdb file storing the various parameters 

for the SMUs. Each SMU is a combination of different subunits, without spatial attributes 

but showing a different area share. By merging the ECVMA data with historical data on 

rainfall and temperature at the community level, we create a unique data set allowing for 

microeconomic analysis of climate impacts in Niger. To the best of our knowledge, there 

are no other studies that bring together such data from various sources to understand the 

linkages between climate variability and adoption of farming practices that have adaptation 

potential.  
   

 
 

 

8
 Point extraction per each enumeration area centre point of values of average of a 50 km radius 

buffer of decadal values. 
9
 For more information see: http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-

database/HTML/ 

 Land use types 

 Agricultural Agro-pastoral Pastoral Total 

     

Number of plots 2487 2393 460 5340 

Number of households 845 836 257 1938 

http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/
http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/
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3.2 Description of climate variability in Niger 

We provide a detailed description of the climate variables available (both objective and 

subjective) and a preliminary view of how they may influence their adaptation strategies. 

Data from NOAA presented in Figure 1 show the time pattern of average rainfalls and 

temperature during the rainy season in Niger by land use type. 

 

Figure 1: Average rainfalls and temperature in rainy season by land use type 

 
 

Figure 1 clearly shows that the amount of rainfall is increasing over time with minor 

differences among land use types. This trend is confirmed by forecasts from NECSD 

(2006) which predicted rainfalls to increase in the Sahel region due to climate change. We 

can observe in Figure 1 very high oscillations in the rainfall pattern. This is also evident 

from Figure 2 which shows the distribution of the coefficient of variation of rainfall across 

time. We can observe that the pastoral areas experience relatively low levels of rainfall and 

high variability compared to the agricultural and agro-pastoral areas. Figure 3 also shows 

the distribution of current and long run average rainfall and we can observe significant 

differences across the different land use types. Such high temporal and spatial rainfall 

variability makes Nigerien farmers vulnerable, hindering the ability of national agricultural 

production to satisfy the increasing population’s demand for food.  
 

Figure 2. Coefficient of variation of rainfall and max temperature (1983-2011) 
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Figure 3. Total amount of rainfall during the rainy season (current and long run)  

 
 

Average and maximum temperature trends over time also provide a good picture of the 

problems from climate change in Niger. As shown in Figure 1 average temperatures in the 

rainy season are clearly increasing over time. Figure 4 also shows the spatial distribution 

of the current and long run average temperature which indicate temporal and spatial 

differences and variability. Although Nigerien farmers are specialized in the cultivation of 

crops that are particularly resistant to high temperatures (for example, millet and sorghum), 

the increase in the temperature level will eventually change farming environments in the 

three land use types. In particular, one of the most plausible scenarios is the expansion of 

the desert areas (Kandji et al., 2006); as only less than 15% of the land is arable (IFAD, 

2009), a further expansion of the Sahara would further constrain the production of the 

country’s agricultural sector. 
 

Figure 4. Average temperature during rainy season (current and long run) 

 
 

To complement the objective climate data presented above, we also present more 

subjective data from the agriculture section module of the ECVM/A. They provide 

information on how households involved in agriculture activities perceive climate change, 

as well as the strategies used to adapt to and mitigate the effect of climate changes. 

 

Most of the households interviewed reported changes in rainfall and temperature patterns 

in the 5 years preceding the interview (see Table 2). Despite what we observed in Figure 

1, in all land use types the most relevant phenomena are the reduction in the amount of 

rainfall (this is probably a consequence of the 2009 drought) and the change in the 

distribution of rain. The general tendency for the sample households is to report less 
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rainfall (81%), worse rain distribution (77%) and more frequent droughts (84%); this is 

particularly true for pastoral areas. Although agricultural areas share the same overall 

patterns, 38% of households report more frequent floods compared to 19% for both agro-

pastoral and pastoral areas. About 72% and 82% of the sample households reported 

respectively more of a delayed start and an early finish of the rainy season in the 5 years 

before the interview. Changes in temperatures also affected 65% of Nigerien households, 

who reported longer heat periods. 

 

Table 2: Perception of climate changes reported for the last 5 years by land use types – in 

proportion 

 

Land use types 

Agricultural 

(N=906) 

Agro-pastoral 

(N=892) 

Pastoral 

(N=632) 

Total 

(N=2430) 

Less rainfalls 0.78 0.77 0.89 0.81 

 

[0.01] [0.01] [0.01] [0.01] 

More rainfalls 0.15 0.15 0.07 0.13 

 

[0.01] [0.01] [0.01] [0.01] 

Worst distribution rainfalls 0.79 0.74 0.78 0.77 

 

[0.01] [0.01] [0.02] [0.01] 

Shorter heat period 0.16 0.14 0.1 0.14 

 

[0.01] [0.01] [0.01] [0.01] 

Longer heat period 0.63 0.65 0.68 0.65 

 

[0.02] [0.02] [0.02] [0.01] 

More frequent drought 0.77 0.83 0.95 0.84 

 

[0.01] [0.01] [0.01] [0.01] 

More frequent floods 0.38 0.19 0.19 0.26 

 

[0.02] [0.01] [0.02] [0.01] 

Delay in the start of the rainy season  0.71 0.66 0.82 0.72 

 

[0.02] [0.02] [0.02] [0.01] 

Rainy season comes earlier 0.74 0.84 0.92 0.82 

 

[0.01] [0.01] [0.01] [0.01] 

Note: The numbers in brackets are standard errors. The household sample here is larger, given that 
we use the entire sample available for this section and not the sample composed by households 
involved in farming activities only and interviewed in both waves. 

 

Since the 3 or 4 months-long Nigerien rainy season feeds the population for 12 months, 

changes in its timing, duration or intensity have strong implications in terms of agricultural 

production and food security for the country. Table 3 provides a picture of the most 

common strategies households used to adapt to the effects of climate change. The most 

commonly used strategies across all land use types is to diversify income sources (48%) 

especially in pastoral areas and where climate change manifests through a change in 

rainfall patterns. Migration is also a common strategy used mostly in the agricultural zones 

of the country. Change in seeds varieties, use of anti-erosion methods and switches from 

livestock raising to crop production are also quite common strategies used, particularly in 

agricultural and agro-pastoral areas. Households in pastoral zones tend to engage more in 

dry-season agriculture and to raise fewer sheep and switch to goats when facing changes 

in temperatures and in rainfall patterns. 
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Table 3: Strategies to adapt to and mitigate climate change effects by land use types – in 
proportion 

 

Change in temperature Change in rainfall patterns 

Agricult
ural 
(N=906) 

Agro-
pastoral 
(N=892) 

Pastoral 
(N=632) 

Total 
(N=2430
) 

Agricult
ural 
(N=906) 

Agro-
pastoral 
(N=892) 

Pastoral 
(N=632) 

Total 
(N=2430
) 

Change seed varieties 
0.24 0.26 0.24 0.25 0.32 0.36 0.19 0.3 

[0.02] [0.02] [0.03] [0.01] [0.02] [0.02] [0.02] [0.01] 

Use methods to protect 
against erosion 

0.24 0.28 0.18 0.24 0.27 0.31 0.17 0.26 

[0.02] [0.02] [0.02] [0.01] [0.02] [0.02] [0.02] [0.01] 

Engage in dry season 
agriculture 

0.21 0.16 0.39 0.24 0.21 0.16 0.31 0.22 

[0.02] [0.02] [0.03] [0.01] [0.02] [0.02] [0.03] [0.01] 

Plant trees 
0.16 0.14 0.18 0.16 0.15 0.12 0.15 0.14 

[0.02] [0.02] [0.02] [0.01] [0.02] [0.01] [0.02] [0.01] 

Irrigate more intensively 
0.08 0.12 0.17 0.11 0.09 0.09 0.14 0.1 

[0.01] [0.02] [0.02] [0.01] [0.01] [0.01] [0.02] [0.01] 

Raise less livestock and 
increase crop production 

0.21 0.26 0.26 0.24 0.25 0.26 0.21 0.24 

[0.02] [0.02] [0.03] [0.01] [0.02] [0.02] [0.02] [0.01] 

Raise fewer small 
ruminants and switch to 
cattle 

0.17 0.17 0.11 0.15 0.17 0.14 0.08 0.14 

[0.02] [0.02] [0.02] [0.01] [0.02] [0.02] [0.01] [0.01] 

Raise fewer cattle and 
switch to camels 

0.07 0.09 0.1 0.08 0.07 0.06 0.12 0.08 

[0.01] [0.01] [0.02] [0.01] [0.01] [0.01] [0.02] [0.01] 

Adopt techniques to 
regenerate grass cover 
favoured by livestock 

0.13 0.14 0.14 0.14 0.15 0.13 0.12 0.13 

[0.02] [0.02] [0.02] [0.01] [0.02] [0.02] [0.02] [0.01] 

Raise fewer sheep and 
switch to goats 

0.16 0.18 0.32 0.21 0.19 0.18 0.34 0.22 

[0.02] [0.02] [0.03] [0.01] [0.02] [0.02] [0.03] [0.01] 

Migration 
0.39 0.27 0.25 0.31 0.37 0.24 0.22 0.28 

[0.02] [0.02] [0.03] [0.01] [0.02] [0.02] [0.02] [0.01] 

Diversify sources of 
revenue 

0.47 0.48 0.49 0.48 0.44 0.47 0.54 0.48 

[0.02] [0.02] [0.03] [0.01] [0.02] [0.02] [0.03] [0.01] 

Note: The numbers in brackets are standard errors. 
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3.3 Description of farming practices (inputs) and socio-economic variables 

Given our dataset, we focus on four different potentially climate-smart agricultural practices 

(use of crop residue, legume intercropping, soil and water conservation (SWC), and use of 

organic fertilizer) and consider two practices that are aimed primarily at improving average 

yields (improved varieties and use of inorganic fertilizers). Table 4 shows the proportion of 

households that implement the aforementioned agricultural practices on their plots, 

disaggregated by land use type.  

 

Unlike legume intercropping, the use of crop residue10 is more widespread in the rural 

areas of the country and particularly in Maradi’s, Zinder’s and Diffa’s agro-pastoral zones. 

Crop residue is practiced on about 40% of the plots during the cropping season analysed, 

whereas legume intercropping is practiced in only 6% of the plots.  

 

SWC structures provide multiple on-farm private benefits in the form of increased and 

more stable yields by reducing water erosion, improving water quality, and promoting the 

formation of natural terraces over time, in addition to providing off-farm private and public 

benefits (Blanco and Lal, 2008; McCarthy et al., 2011). SWC structures considered here 

include sand bags, half moons, zai, tree belts, and wall and stone perimeters. Erosion 

problems11 are reported on more than 15% of the plots in the sample. The problem is 

particularly acute in the pastoral areas, reporting 27% of the plots affected by erosion. 

Despite the high rate of erosion, we can observe from Table 4 that the use of an anti-

erosion measure is very low in all the land use types. Only 3% (4% in pastoral areas) of 

the plots have been treated using techniques aiming to off-set the effects of soil 

degradation.  

 

Use of organic fertilizer is another major component of a sustainable agricultural system 

and a commonly suggested method of improving soil fertility, while capturing economies of 

scope in crop-livestock systems. Our data show that organic fertilizer (which is composed 

of animal manure, compost and green manure) is used on about 33% of the sample plots. 

The uptake seems to also be heterogeneous across the different land use types.  

 

The use of high yielding varieties could contribute to improving food security and income 

for the rural population by providing higher yields (e.g., Kijima et al., 2008; Mendola, 2007; 

Asfaw et al., 2012a, 2012b; Amare et al., 2011 etc). Nevertheless, whether improved high 

 
 

 

10
 It is however important to point out that for farmers in Niger crop residues are highly valuable as 

they are used as feed for livestock, as fuel for cooking, and as thatching/craft material. 
11

 The ECVM/A dedicates a section of the agriculture questionnaire to erosion problems affecting 
land owned by the household. Even if not based on a scientific measurement of the level of 
degradation of the soil, the section provides a good picture of farmers’ perception of the problem. 
According to the literature discussed above (Knowler & Bradshaw, 2007) the perceived severity, 
more than the actual magnitude, of the erosion issue is a key determinant for farmers’ use of 
sustainable land management practices; thus this information is of paramount importance for our 
analysis. 
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yielding varieties perform better than local varieties under harsh climatic conditions is very 

much an empirical question. Despite the potential productivity benefit, the proportion of 

plots planted with improved varieties in Niger is only about 2%. We also consider the 

utilization of inorganic fertilizers and our data show that about 11% of sample plots are 

treated with inorganic fertilizer, which is relatively high compared to the use of improved 

seeds. Looking across the different land use types, there seems to be significant 

differences in the use of inorganic fertilizers. Although the impact on productivity of using 

inorganic fertilizer and improved seed is widely documented, the benefits in terms of 

adapting to climate change and/or reducing risk to current climate stresses is uncertain.  

 

Given the very low uptake of some of the practices (e.g. legume intercropping, improved 

varieties and SWC measures), in the subsequent section we mainly focus and organize 

our descriptive and empirical analysis on three major inputs/techniques widely used by 

Nigerien farmers: organic fertilizers (O), modern inputs (use of inorganic fertilizer or 

improved seed)12 (F), and crop residues (R).  

 
  

 
 

 

12
 We have grouped both the use of inorganic fertilizer and improved seed into one category since 

the level of use for improved seeds is very low. 
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Table 4: Descriptive summary of farming practices and other input use – in proportion 

 

Land use types 

Agricultural 
(N=2487) 

Agro-pastoral 
(N=2393) 

Pastoral 
(N=460) 

Total 
(N=5340) 

Organic fertilizers 0.37 0.25 0.12 0.33 

 
[0.48] [0.44] [0.33] [0.47] 

Modern inputs:  0.13 0.11 0.06 0.12 

 [0.34] [0.31] [0.24] [0.33] 

Inorganic fertilizers 0.12 0.09 0.03 0.11 

 
[0.32] [0.29] [0.16] [0.31] 

Improved seeds 0.02 0.02 0.03 0.02 

 
[0.13] [0.13] [0.18] [0.14] 

Conservation practices: 0.46 0.50 0.31 0.47 

 
[0.50] [0.50] [0.46] [0.50] 

Crop residues 0.39 0.45 0.27 0.40 

 
[0.49] [0.50] [0.44] [0.49] 

Legume intercropping 0.06 0.05 0.03 0.06 

 
[0.24] [0.21] [0.17] [0.23] 

Anti-erosion measures: 0.03 0.03 0.04 0.03 

 [0.18] [0.16] [0.19] [0.17] 

Sand bag 0.01 0.00 0.02 0.00 

 [0.07] [0.03] [0.13] [0.07] 

Half moon 0.00 0.00 0.00 0.00 

 [0.06] [0.05] [0.07] [0.05] 

Zai 0.00 0.00 0.00 0.00 

 [0.03] [0.06] [0.00] [0.04] 

Tree belts 0.02 0.02 0.02 0.02 

 [0.13] [0.12] [0.15] [0.13] 

Wall 0.00 0.00 0.00 0.00 

 [0.02] [0.03] [0.00] [0.02] 

Stone perimeter 0.01 0.01 0.00 0.01 

 [0.09] [0.08] [0.05] [0.08] 

Note: The numbers in brackets are standard errors. 

 

Table 5 reports the use of combined practices on the same plot to understand whether 

farmers in Niger use a mix of measures to deal with a multitude of production constraints 

rather than use a single practice. Of the 5350 plots considered in the analysis, about 61% 

of the plots benefited from one or more farm management practices, although all three of 

the practices were applied on only 3% of the plots. Table 5 reveals that although the use of 

crop residues and organic fertilizers are used in most of the cases as a standalone 

practice, it is not uncommon to find them combined together, especially in agricultural and 

agro-pastoral areas. On the other hand, the use of modern inputs in combination with other 

inputs is quite low. The bottom line is that the proportions of use of a given practice in 

combination with other practices are relatively small, indicating that there are few dominant 

packages. Instead, this evidence suggests that individual households are choosing 

packages specific to the agro-ecological and socio-economic characteristics. 
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Table 5: Percentage of use of practices’ in combinations by land use types 

 Land use types 

 
Agricultural 
(N=2487) 

Agro-
pastoral 

(N=2393) 

Pastora
l 

(N=460
) 

Total 
(N=5340

) 

Residue, Organic & modern inputs 
(ROF) 

0.04 0.03 0.02 0.03 

 
[0.19] [0.16] [0.12] [0.18] 

Residue and organic(RO) 0.13 0.10 0.04 0.12 

 
[0.33] [0.30] [0.19] [0.32] 

Residue and modern inputs(RF) 0.03 0.03 0.01 0.03 

 
[0.16] [0.17] [0.11] [0.16] 

Organic and modern inputs (OF) 0.03 0.02 0.01 0.03 

 
[0.18] [0.14] [0.12] [0.17] 

Residues (R) 0.36 0.41 0.27 0.38 

 
[0.48] [0.49] [0.44] [0.48] 

Modern inputs(F) 0.13 0.13 0.10 0.13 

 
[0.34] [0.34] [0.43] [0.34] 

Organic (O) 0.37 0.24 0.16 0.31 

 
[0.44] [0.31] [0.37] [0.48] 

NONE 0.14 0.22 0.47 0.18 

 
[0.48] [0.49] [0.48] [0.49] 

Note: The numbers in brackets are standard errors. 
 

In Table 6 we analyze if users and non-users of these three inputs/techniques are 

distinguishable in terms of crop productivity.13 Results show that users of modern inputs 

are statistically distinguishable in terms of crop productivity. Plots with modern inputs 

perform better than plots without modern inputs in terms of value of harvest in all land use 

types. On the other hand, users of crop residues tend to have lower crop productivity 

compared to non-users. It is important however to point that the results presented above 

are all indicative of the potential impact of use of these practices on crop productivity. 

Thus, in the subsequent sections we will carry out a rigorous empirical analysis to verify 

whether these differences in productivity remain unchanged after controlling for all 

confounding factors.  

 
 

 

13
 We have considered all major crops cultivated during the rainy season for the analysis, which 

include millet, rice, sorghum, peanuts, sorrel, rice, maize, sesame, cassava, okra, onion, potatoes 
and other crops. Productivity is measured in terms of value (CFAC per acre) instead of quantities 
(kg per acre) because of the difficulty of aggregation of different kinds of crops, grown on the same 
plot, having different productivity levels and economic values, which might lead to misleading 
results. To compute the value of the harvest, each crop has been evaluated using average market 
price for the community computed from the consumption section of the questionnaire.  
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Table 6: Productivity differentials under varying farm practices and land use types 

  Land use types 

 
Total Agricultural Agro-pastoral Pastoral 

  
Non-
users 

Users 
Non-
users 

Users 
Non-
users 

Users 
Non-
users 

Users 

Use of organic fertilizers 
     

Plot area 
(acres) 

4.30 4.68** 3.34 3.89*** 4.66 5.75*** 6.56 6.19 

[0.08] [0.13] [0.09] [0.13] [0.13] [0.26] [0.36] [0.87] 

Value of 
harvest- 

(‘000 
CFAF/acre

) 

24.46 27.91 24.19 28.19 17.16 21.68 59.9 70.7 

[1.71] [2.87] [2.38] [2.59] [1.69] [6.28] [10.9] [16.01] 

N 3786 1554 1578 909 1821 572 387 73 

Use of modern inputs      

Plot area 
(acres) 

4.4 4.52 3.49* 3.89* 4.87 5.26 6.80 3.97**
* 

[0.07] [0.19] [0.08] [0.23] [0.12] [0.30] [0.35] [0.97] 

Value of 
harvest- 

(‘000 
CFAF/acre

) 

22.70 43.60**
* 

22.92 43.50**
* 

16.11 32.02**
* 

54.64 12.15*
* 

[1.28] [7.35] [1.38] [9.91] [1.45] [1.14] [10.01] [2.99] 

N 4642 698 2157 330 2073 320 412 48 

Use of crop residues      

Plot area 
(acres) 

4.5 4.32 3.54 3.54 5.11 4.72* 6.27 6.99 

[0.09] [0.11] [0.09] [0.13] [0.16] [0.16] [0.39] [0.60] 

Value of 
harvest- 

(‘000 
CFAF/acre

) 

29.21 19.18**
* 

29.05 19.72** 20.49 15.03 66.54 48.29 

[2.19] [1.47] [2.52] [2.15] [3.16] [1.64] [12.24] [12.22] 

N 3326 2014 1363 1124 1221 1172 313 147 

Note: *** p<0.01, ** p<0.05, * p<0.1. The numbers in brackets are standard errors. 1 US$ = 470 

CFAF 
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4. Empirical strategies 

4.1. Modelling the adoption decision  

Based on the extensive literature on the choice of farming practice (including input use), 

we model the farming practice selection decision as the outcome of a constrained 

optimization problem by rational agents (Feder et al. 1985; Foster and Rosenzweig, 2000; 

Suri, 2011 and de Janvry et al. 2010). The most common constraints include those on the 

budget, access to information, credit and the availability of both technology and other 

inputs. Households are assumed to maximize their utility, subject to these constraints, and 

adopt a given technology if and only if the technology is available and affordable, and at 

the same time the selection decision is expected to be beneficial (in terms of profits or 

otherwise) (de Janvry et al., 2010).  

 

We model utility as a function of the income gained from each plot, so that the adoption 

decision of farmer i for the cropping season t can be expressed as follows: 

        
 

  {  
                 ((    |        

 
  )  (    |        

 
  ))   

                 
     (1) 

 

Where         
 

 is farmer i’s binary adoption decision for practice j on plot k at time t-1, 

which denotes the time when adoption decisions are taken, and      is the vector of 

outputs considered in our model (productivity) from plot k at time t. In other words, 

equation 1 states that farmer i adopts practice j if at time (t-1) he/she expects that 

productivity/profit at time t will be higher under adoption. More specifically the output of plot 

k at time t can be expressed as:   

                            
 

           (2)                                                                             

  

Where      is a vector of household, plot and community characteristics,     is a bundle of 

climatic variables characterising the cropping season at time t in community c, and      is 

the error term. Therefore we can rewrite the adoption condition equation as follows:  

    (             
 

  )      (             
 

  )                              
    

                                                                                     (                    )         
               (3) 

 

Despite being quite obvious, this means that farmers select a given practice if and only if 

the expectations for its impact built at time (t-1),       
  , is positive. Given the fact that 

the impact of adoption is case specific, it is then reasonable to model the expected impact 

of adoption as a function of the observed variables that also affect production and 

unobservable characteristics (    ). 

      
    (                       )                                                                  (4) 

 

Farmers are also more likely to adopt a mix of measures to deal with a multitude of 

production constraints than to adopt a single practice. In this context, recent empirical 

studies of technology adoption decisions assume that farmers consider a set of possible 

technologies and choose the particular technology bundle that maximizes expected utility, 

accounting for interdependent and simultaneous adoption decisions (Dorfman, 1996; 

Teklewold et al., 2013). In order to be able to account for this interdependency, we use a 
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multivariate probit (MVP) technique applied to multiple plot observations to jointly analyze 

the factors that increase or decrease the probability of adopting each agricultural practice 

analyzed in this paper. This approach simultaneously models the influence of the set of 

explanatory variables on each of the practices, while allowing the unobserved and 

unmeasured factors (error terms) to be freely correlated. One source of correlation may be 

due to complementarity (positive correlation) or substitutability (negative correlation) 

between different practices. 

 

The MVP model is characterised by a set of binary dependent variables (        
 

) that 

equal 1 if farmer i adopts the practice j on plot k, and zero otherwise, such that: 

             
 

 {
              

                               

               
, for each j=1,...,j                (5) 

 

In equation (5) the assumption is that the rational thi  farmer has a latent variable, *

ijkG , 

which captures the observed and unobserved preferences or demand associated with the 
thj  practice. This latent variable is assumed to be a linear combination of farmer, 

household, plot, climatic and community characteristics (Vkt-1 and Wct1,) that affect the use 

of the jth practice, as well as unobserved characteristics (Ukt-1) captured by the error term 

ukt-1. Based on empirical work and economic theory, we have summarized variables 

hypothesized to explain the adoption decision and resulting yield increase under four major 

categories: (i) exposure to climatic stress, (ii) bio-physical sensitivity to such stress, (iii) 

household-level determinants of adaptive capacity in terms of farmers’ ability to prepare 

and adjust to the resulting stress, and, finally, (iv) system-level determinants of adaptive 

capacity in terms of enabling factors for adaptation. The rationale of these sets of variables 

and their characteristics are described in more detail below (see table 7).  

 

The first variables used in the analyses are climate variables that characterise exposure to 

climate-related stress. For input decisions, we use long-term historical data on rainfall 

patterns and temperatures to capture expected climate at the beginning of the season. For 

productivity, we include actual climate realizations.  For input decisions, we use the 

coefficient of variation in rainfall (1983-2011), average rainfall shortfall (1983-2011)14, the 

coefficient of variation temperature and number of dekads in which the maximum 

temperature was greater than 35 degrees. Greater riskiness, reflected in the coefficients of 

variation and average shortfall, is expected to increase use of risk-reducing inputs, but 

decrease use of modern inputs. Higher maximum temperatures are also expected to 

increase risk-reducing inputs such as crop residue and organic fertilizer, whereas lower 

maximum temperatures should favour improved seeds and chemical fertilizer use. For 

productivity, we use growing season rainfall and self-reported delay in onset of rainfall 

 
 

 

14
 The shortfall variable has been computed as the average distance between the yearly 

precipitations during rainy season and their long-term mean. Those years reporting a level of rainfall 
higher than the long-run average have not been considered for the computation of the variable. 
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observed in the growing season. We include several plot-specific characteristics, such as 

soil nutrient availability constraints, plot size, types of soil on the plot and topography of the 

plot. Land size can be expected to affect input use positively as farmers with larger land 

size may find it easier to experiment with a new technology on a part of their land.  

 

When considering system-level determinants of adaptive capacity, access to institutions 

and transaction costs are among the main determinants governing input choice decisions. 

This study proxies transaction costs and access to institutions via observable factors that 

explain transaction costs or mitigate transactions costs, such as geographical areas, 

distance-related variables and road density. By increasing travel time and transport costs, 

distance-related variables are expected to have a negative influence on input use 

decisions. By facilitating information flow or mitigating transactions costs, access to 

institutions variables are expected to have a positive effect on the input use decision. A 

diverse set of potential household level determinants of adaptive capacity are considered. 

Household wealth indicators include a wealth index15 based on durable goods ownership 

and housing condition, an agricultural machinery index based on agricultural implements 

and machinery access, and livestock size (measured in tropical livestock units (TLU)). 

Household size, age, gender, sex ratio and education level of the household head are also 

included. Family size in terms of adult equivalent units is a potential indicator of labour 

supply for production, and labour bottlenecks can also be a significant constraint to the use 

of some farm management practices. Furthermore, land tenure status is taken into 

consideration since tenure security increases the likelihood that farmers adopt strategies 

that will capture the returns from their investments in the long run (e.g. Kassie et al., 2010; 

Denning et al., 2009; Teklewold et al., 2013). 

 
   

 
 

 

15
 The household wealth index is constructed using principal component analysis, which uses 

assets and other ownerships. In this specific case the following variables have been included: 
number of (per-capita) rooms in the dwelling, a set of dummy variables accounting for the 
ownership of dwelling, mortar, bed, table, chair, fan, radio, tape/CD player, TV/VCR, sewing 
machine, paraffin/kerosene/electric/gas stove, refrigerator, bicycle,  car/motorcycle/minibus/lorry, 
beer brewing drum, sofa,  coffee table, cupboard, lantern, clock, iron, computer, fixed phone line, 
cell phone, satellite dish, air-conditioner, washing machine, generator, solar panel, desk, and a 
vector of dummy variables capturing access to improved outer walls, roof, floor, toilet, and water 
source. The household agricultural implement access index is also computed using principal 
components analysis and covers a range of dummy variables on the ownership of hand hoe, 
slasher, axe, sprayer, panga knife, sickle, treadle pump, watering can, ox cart, ox plough, tractor, 
tractor plough, ridger, cultivator, generator, motorized pump, grain mail, chicken house, livestock 
kraal, poultry kraal, storage house, granary, barn, and pig sty.   
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Table 7: Descriptive summary of selected variables by land use types 

Variables 
Agricultural Agro-pastoral Pastoral Overall 

Mean 
Std. 
Err. 

Mean 
Std. 
Err. 

Mean 
Std. 
Err. 

Mean 
Std. 
Err. 

Exposure to climatic stress 

        Coefficient of variation of rainfall 
(1983-2011) 0.25 0.06 0.29 0.05 0.39 0.13 0.28 0.07 
Average rainfall shortfall (1983 - 
2011) 2.46 3.74 1.73 4.43 4.27 3.23 2.65 4.42 
Long-term mean rainfall (1983-
2011) 407.84 67.36 

350.6
6 34.08 

269.6
3 89.48 

373.4
2 70.54 

# dekades growing season max 
temp was over 35 oC (1989-2011) 

38.83 23.26 64.09 19.40 
143.9

4 
50.09 57.96 37.29 

Coefficient of variation of maximum 
temperature (1989-2011) 

0.02 0.00 0.02 0.00 0.02 0.00 0.02 0.00 

Long-term mean max temp (1983-
2011) 

33.62 0.80 34.38 0.52 36.27 1.18 34.16 1.03 

Bio-physical sensitivity 
        

Types of soil in the plot 
        

Silty soil 0.05 0.23 0.04 0.20 0.04 0.19 0.05 0.21 

Clay soil 0.10 0.30 0.09 0.28 0.33 0.47 0.12 0.33 

Rocky soil 0.07 0.26 0.13 0.34 0.05 0.23 0.09 0.29 

Topography of plots 
        

Plot is located on hill  0.06 0.25 0.05 0.22 0.03 0.18 0.06 0.23 

Plot is located on gentle slope 0.08 0.28 0.16 0.37 0.19 0.39 0.12 0.33 

Plot is located on steep slope  0.04 0.20 0.06 0.23 0.09 0.29 0.05 0.22 

Plot is located in a valley 0.08 0.27 0.13 0.33 0.28 0.45 0.12 0.32 

Nutrient availability constraint- (1-4 
scale, 5 = mainly non-soil) 

2.25 0.68 2.41 0.65 1.86 0.65 2.31 0.68 

Log (total land area per hh) (ha) 2.40 0.73 2.63 0.76 2.39 0.99 2.44 0.82 

Number of plot owned by the hh 3.96 2.15 3.93 2.04 2.53 1.65 3.72 2.11 

Plot cultivated during dry season 
(1=yes) 

0.14 0.35 0.07 0.25 0.14 0.35 0.12 0.32 

Household level variables 
        

Female farm (1=yes) 0.12 0.33 0.18 0.38 0.07 0.26 0.14 0.35 

Log (age of the user) 3.77 0.32 3.77 0.33 3.81 0.31 3.78 0.32 

Log (household size) 2.01 0.43 2.01 0.47 2.03 0.41 2.01 0.45 

Sex ratio 1.26 0.96 1.18 0.90 1.51 1.18 1.24 0.95 

Dependency ratio 1.46 0.94 1.47 0.96 1.50 1.07 1.45 0.96 

Log (highest education in the hh) 0.89 1.16 0.91 1.17 0.77 1.10 0.96 1.18 

The hh owns the plot 0.81 0.39 0.85 0.35 0.83 0.37 0.81 0.39 

Wealth Index  -0.11 0.12 -0.12 0.11 -0.09 0.16 -0.10 0.16 

Index on Agricultural implements   0.82 1.20 0.99 1.31 0.12 0.82 0.80 1.25 

Livestock size - in TLU 0.71 0.59 0.79 0.65 0.77 0.73 0.73 0.63 

System-level variables 
        

At least one cooperative exist in the 
community (1=yes) 

0.17 0.37 0.13 0.34 0.12 0.33 0.16 0.37 

Distance from the nearest market 2.31 1.80 2.82 1.89 2.45 1.53 2.38 1.85 

Distance from the Agric. Extension 
Office (km) 

2.05 1.58 1.83 1.67 2.90 1.78 1.93 1.66 

Distance to dowelling (km) 1.27 0.67 1.15 0.70 1.31 0.80 1.28 0.75 

Log (road density: length in m in a 
10 km radius) 

9.92 2.01 9.78 2.54 8.27 4.32 9.83 2.47 
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4.2 Modelling the impact of adoption on crop outcomes  

Taking productivity impacts as a key indicator of adaptive capacity, we move to an analysis 

of the relationship between farm practice selection and crop outcomes. In this respect, the 

relevant estimating equation for the yield model is given by equation 2. The impact of 

adoption of the jth practice on the outcome variables is measured by the estimate of the 

parameter   . Estimating crop outcome as in this equation, however, might generate 

biased estimates because it assumes that agricultural practice selection (or input use) (A) 

is exogenously determined, while it is likely endogenous, as discussed above. To make 

this more explicit we can insert equation 4 into equation 2 as follows: 

                            
 

(                       )                                              (6) 

 

Given that time t immediately follows t-1 from a chronological perspective, it is quite 

intuitive that variables involving household, community and soil characteristics are 

expected to change only marginally between the two time periods, which implies that 

equation 6 can be rewritten as follows: 

                            
 

(                   )                                            (7) 

 

It is clear from equation 7 that       
 

 is endogenous; farmers who select a certain practice 

may have systematically different characteristics from the farmers who do not. Therefore, 

to explicitly account for multiple endogeneity problems in our structural model, we employ 

the conditional recursive mixed-process estimator (CMP) as proposed by Roodman 

(2011). This approach is suitable for a large family of multi-equation systems where the 

dependent variable of each equation may have a different format. It also takes into account 

both simultaneity and endogeneity, and produces consistent estimates for recursive 

systems in which all endogenous variables appear on the right-hand-side as observed. 

The major limitations of implementing this approach is computational burden and on 

achieving convergence especially for a large family of multi-equations. Therefore we 

restricted ourselves to a maximum of four equations which are seen below: 

                            
             

             (8) 

      
 

                              j=1, 2, 3                                  (9) 

 

The consistency of this method depends on the validity of instruments to identify the 

adoption equations, which in turn, rely on two conditions. First, the instruments must be 

correlated with the endogenous variables (use of agricultural practices). Second, they must 

not be correlated with the unobserved factors that may affect the plot’s productivity (i.e. 

   ). We consider using the coefficient of variation of rainfall (1983-2010), average shortfall 

of rainfall (2006-2010) and number of dekades the average temperatures is greater than 

35º C (1983-2010) as potential instruments for the household decision to use agricultural 

practices during the current year. If farmers form expectations about the climatic conditions 

of their area, we might expect that they plant crops and use farm practices that are suited 

to their expectations. The formation of these expectations is key for production. Thus for 

households in rural areas, climate variation across space and time should generate 

corresponding variation in household response or behaviour in term of change in farm 

practices that will in turn create variation in agricultural output and thus household income.  
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Its impact on expected utility maximization is realized mainly through production 

technology choices. For this reason, we focus on climate variability which, we argue, 

generates uncertainty about expected climatic conditions.   

5. Results and discussion 

5.1 Determinants of adoption  

The maximum likelihood estimates of the MVP model of use of farm management 

practices are presented in Table 8. It provides the driving forces behind farmers’ decisions 

to use farm management strategies where the dependent variable takes the value of 1 if 

the farmer uses specific practices or inputs on a given plot and 0 otherwise. The model fits 

the data reasonably well – the Wald test of the hypothesis that all regression coefficients in 

each equation are jointly equal to zero is rejected. Also the likelihood ratio test of the null 

hypothesis that the error terms across equations are not correlated is also rejected as 

reported in Table 8. 
 

Table 8: Multivariate probit estimates – determinants of farming practice selection: climate risk 

exposure, sensitivity and adaptive capacity 

  Crop residues Organic fertilizer Modern inputs 

coef Se coef se coef se 

Exposure to climatic stress       

Average rainfall shortfall (1983 - 2011) -0.003 0.002 -0.004** 0.002 -0.004* 0.002 

Log (coefficient of variation of rainfall for rainy 
season (1983-2011)) 

0.478*** 0.136 -0.164 0.137 -0.307** 0.155 

Log (coefficient of variation of  temperature 
(1989-2010)) 

1.809*** 0.255 -2.913*** 0.257 -3.337*** 0.335 

# years growing season average maximum 
temperature was over long term max temp 

0.165*** 0.026 -0.046* 0.025 0.009 0.032 

Bio-physical sensitivity       

Silty soil (reference: sand) 0.227*** 0.087 -0.081 0.087 0.058 0.098 

Clay soil -0.108* 0.064 -0.418*** 0.066 -0.041 0.074 

Rocky soil 0.036 0.064 -0.115* 0.064 0.040 0.075 

Topography – hill (reference: flat) -0.236*** 0.083 0.061 0.080 -0.071 0.100 

Topography – gentle slope 0.001 0.058 -0.068 0.060 -0.145* 0.077 

Topography – steep slope  0.098 0.086 -0.187** 0.092 -0.254** 0.122 

Topography – valley 0.172*** 0.062 0.083 0.062 0.150** 0.072 

Nutrient availability constraint- (1-4 scale, 5 = 
mainly non-soil) 

0.140*** 0.036 0.105*** 0.036 0.051 0.043 

Log (total land area) -0.008 0.029 -0.067** 0.029 -0.015 0.034 

Number of plot owned  0.000 0.012 -0.082*** 0.012 -0.027* 0.014 

Plot cultivated during dry season -0.092 0.064 0.143** 0.060 0.377*** 0.067 

 
 
System-level variables 

     

At least one cooperative exist in the 
community 

-0.236*** 0.055 0.156*** 0.053 -0.044 0.065 

Distance from the nearest market 0.005 0.012 0.053*** 0.012 -0.032** 0.015 

Distance from the Agric. Extension Office 0.015 0.013 0.027** 0.013 -0.062*** 0.015 
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Distance to dowelling  -0.053** 0.026 -0.314*** 0.026 -0.068** 0.030 

Log (road density: length in m in a 10 km 
radius) 

-0.027*** 0.010 0.055*** 0.011 0.019* 0.011 

Household level variables       

Wealth Index  -0.188 0.144 0.556*** 0.136 1.112*** 0.149 

Index on Agricultural implements   -0.038* 0.020 0.097*** 0.019 0.057** 0.022 

Livestock size - in TLU -0.052 0.035 0.068* 0.035 -0.047 0.043 

Female farm 0.093* 0.053 -0.088 0.055 -0.056 0.067 

Log (age of the user) 0.096 0.061 0.070 0.061 0.018 0.074 

Log (household size) 0.021 0.057 0.036 0.057 -0.125* 0.068 

Sex ratio 0.048** 0.019 -0.012 0.020 -0.038 0.024 

Dependency ratio -0.003 0.023 0.001 0.023 0.085*** 0.027 

Log (highest education in the hh) -0.007 0.017 0.050*** 0.017 0.051*** 0.020 

Household owns the plot  0.299*** 0.049 0.279*** 0.050 -0.019 0.055 

Region fixed effect (reference: Niamey)     

Agadez -0.135 0.313 2.116*** 0.317 2.038*** 0.372 

Diffa 1.807*** 0.233 1.405*** 0.226 1.173*** 0.280 

Dosso -0.200 0.175 -0.162 0.161 -0.161 0.172 

Maradi 1.211*** 0.182 1.083*** 0.170 0.673*** 0.189 

Tahoua -0.224 0.178 0.775*** 0.161 -0.069 0.177 

Tilliberi -0.049 0.172 -0.522*** 0.160 -0.725*** 0.171 

Zinder 1.483*** 0.199 1.522*** 0.188 1.286*** 0.218 

Constant -9.994*** 1.153 -12.975*** 1.168 -14.214*** 1.498 

/atrho21 0.094*** 0.024     

/atrho31 0.099*** 0.029     

/atrho32 0.239*** 0.029     

Likelihood ratio test of  rho21 = rho31 = rho32 = 0:  chi2(3) =  95.4929   Prob > chi2 = 0.0000 

Number of observation 5340      

Log-Likelihood -8613.0604      

Wald chi2(114)  2025.66           

Note:  *** p<0.01, ** p<0.05, * p<0.1 

 

We find that the estimated correlation coefficients are statistically significantly different 

from zero and positive in all the three pair cases, suggesting the propensity of using a 

practice is conditioned by whether another practice in the subset has been used or not. 

Besides justifying the use of MVP in comparison to the restrictive single equation 

approach, the sign of the coefficients supports the notion of interdependency among the 

input use decision of different farm management practices which may be attributed to 

complementarity or substitutability among the practices. We find that the use of crop 

residue, organic fertilizer and modern inputs are all complementary to each other.  

The positive correlation coefficient between modern inputs (inorganic fertilizer and 

improved seed) and organic fertilizer is the highest among all (23.9%). The positive 

correlation between modern inputs and use of organic fertilizer indicates that, given the 

very low soil fertility of most farmland in Niger currently, low cost fertility-improving inputs 

are still complements and not yet substitutes. The use of multiple fertility-enhancing inputs 

also indicates that for many households, different constraints are binding on the different 

fertility-enhancing inputs.  
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The MVP results reported in Table 8 also show that decisions to use different farm 

management practices are quite distinct and, to a larger extent, the factors governing the 

decision of each of them are also different, suggesting the heterogeneity in use of farm 

management practices.   

 

Results show the importance of climatic variables, i.e., exposure, in explaining the 

probability of farm households’ decision to use different agricultural practices. We find that 

greater variability in rainfall and maximum temperature during the growing season increase 

the use of risk-reducing practices. For instance, in regions with greater variability in rainfall 

and temperature, more crop residue measures are used. On the other hand, the probability 

of using modern inputs and organic fertilizer is negatively correlated with variability in 

rainfall and temperature. Climatic shocks as represented by average shortfall of rainfall 

negatively affect the propensity to use crop residue and organic fertilizer though for crop 

residues this result is not statistically significant. We also find that in communities where 

temperature is higher (i.e. the number of dekades the average maximum temperature was 

over 35 degrees Celsius), farm households are more likely to use crop residues but less of 

organic fertilizers16. Our results are consistent with the findings of Kassie et al. (2010) and 

Teklewold et al. (2013a), who found that yield enhancing technologies like improved seeds 

and inorganic fertilizer provide a higher crop return in wetter areas than in drier areas. Our 

findings are also consistent with Arslan et al. (2013), who found a positive relationship 

between the use of conservation agriculture and climate variability. Overall our findings 

suggest that farmers are responding to climate patterns in terms of their adaptation 

strategies but the responses are heterogeneous depending on the practices and the type 

of climatic variable considered and that climatic variability should be an integral part of 

promotion activities. 

 

Bio-physical plot characteristics are also found to be important determinants of most of the 

practices. Total land holdings and number of plots owned are negatively correlated with 

the use of organic fertilizer and modern inputs. As expected, the topography of the plots 

and the types of soils in the plots also play a crucial role in explaining the input use 

decision. Soil characteristics mainly influence the use of crop residues and organic 

fertilizers, but most of the coefficients are not significant for modern inputs use. The use of 

crop residues is more pronounced on silty soil and less on clay soil whereas organic 

fertilizers are less often used in clay and rocky soil compared to sand soil. The propensity 

of using crop residue is also higher in plots located in valley (in an area of cultivable land 

between the slopes of a hill) and less on plots located on a hill compared to plots located 

on flat land. Use of modern inputs is also lower on gentle and steep slopes but higher in 

valleys in reference to flat slope land types. We also find that farm households with less 

fertile soils or high nutrient availability constraints are more likely to implement crop 

residue and organic fertilizer. Overall, our results about the role of soil quality are in line 

with findings of Teklewold et al. (2013a).  

 
 

 

16
 We have not included long run mean rainfall and temperature due to collinearity problems. 
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At the system level, results show the key roles played by rural institutions and transaction 

costs, largely confirming the existing literature (for example Asfaw et al., 2014; Arslan et 

al., 2013 and Knowler and Bradshaw, 2007). The greater the distance to the nearest 

agricultural extension officer (AEO), the higher the incentive to use practices requiring less 

initial capital and less skills (i.e. crop residues and organic fertilizers); the opposite holds 

true for the use of modern inputs. In this case the assistance provided by the AEO in terms 

of training and information dissemination is crucial for the use of improved seeds and/or 

inorganic fertilizers. The distance between the dwelling and the plot is also a common 

element negatively influencing the input choice i.e. the longer the distance, the higher the 

transportation costs, the lower the incentive to adopt a technology, which is consitent with 

other findings (e.g Teklewold et al. 2013a). Availability of road infrastructure as proxied by 

length of road density in a 10 km radius is positively correlated with use of organic fertlizer 

and modern inputs but negatively correlated with the use of crop residues. Farm housholds 

residing at far distances from the nearest periodic or permanent market tend to use more 

organic fertlizer but those who reside nearby markets tend to use more of modern inputs.  

 

Results for wealth indicies such as the wealth index, the agricultural implement index and 

livestock ownership, are also in line with expectations and with the existing literature. 

Wealthier households use practices that require more initial capital both in terms of general 

and specific agricultural assets. As expected, livestock ownership is positively correlated 

with the use of organic fertilizers. The level of household wealth measured by the wealth 

index and index of agricultural inputs is negatively associated with the use of crop 

residues, confirming the idea that this practice, requiring a minimal initial investment, is 

carried out mostly by less wealthy households. On the other hand, the level of household 

wealth measured by the wealth index and index of agricultural inputs is positively 

correlated with the use of organic fertlizer and modern inputs. We find that farm 

households who own the land are more likely to use crop residue and organic fertilizer 

while the effect is not significant for modern inputs. Our results are consistent with a 

number of studies that have demonstrated that the security of land ownership has 

substantial effect on the agricultural performance of farmers (e.g. Denning et al., 2009; 

Teklewold et al., 2013a; Asfaw et al., 2014). To the extent that ownership is associated 

with greater tenure security than with rental agreements, particularly in the longer term, 

better tenure security increases the likelihood that farmers use strategies that will capture 

the returns from their investments in the long run. 

 

Household demographics to some extent also play a significant role in explaining the 

household input use decision. The positive coefficient associated with education for the 

use of organic and modern inputs confirm its key role already pointed out in much of the 

literature (e.g. Teklewold et al., 2013a). Moreover, smaller-sized households (or with 

limited access to labour) and a higher dependency ratio find the use of modern inputs as 

labour-saving techniques particularly attractive. Crop residue is also more often used by 

females compared to male plot users (see Table 8 for details).   
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5.2 Impact of adoption on crop productivity  

Table 9 reports results for OLS, conditional recursive mixed process (CMP) estimators and 

instrumental variables estimation using heteroskedasticity-based instruments (with 

additional instruments constructed using Lewbel, 2012 method) for the impact of input use 

on crop productivity (all estimates are reported accounting for cluster heteroskedasticity 

standard error at the household level). The simplest approach to investigate the effect of 

input use consists of estimating an OLS model of productivity estimate without controlling 

for any potential endogeneity problems and with a dummy variable equal to 1 if the farmer 

decided to use the practices on a given plot, 0 if otherwise (as in column (1 and 2) of Table 

9). The OLS results would lead us to conclude that there are significant observable 

differences in terms of agricultural outputs between users and non-users. The value of 

crop harvest is significantly greater for users of modern inputs and organic fertilizers 

compared to the non-users (coefficient for crop residues is also positive but not 

significant). This approach, however, assumes that the uses of these agricultural practices 

are exogenously determined in the production function while the endogeneity test17 

determines the three dummies to be endogenous. Therefore the estimation via OLS would 

yield biased and inconsistent estimates. The impact estimates presented further on use 

conditional recursive mixed process (CMP) techniques to account for this problem and 

instrumental variables techniques boosted by the Lewbel (2012) method (ivreg2h) to 

correct for weak instruments and heteroskedasticity problems.  

 

Before turning to the causal effects of adoption on crop productivity, we briefly discuss the 

quality of the selection instruments used. To probe the validity of our selection instruments, 

we looked at two major tests: the weak identification test and over identification tests. The 

test results support the choice of the instruments, as do the F-test values for all of the 

specifications (bottom of Table 9). The F-statistic of joint significance of the excluded 

instruments is greater than 10, thus passing the test for weak instruments. The null 

hypothesis in the case of the over identification test is that the selection instruments are 

not correlated with the yield error term and we fail to reject the null in all the cases.  

 

As we can see from Table 9, results for the impact on plot productivity are quite consistent 

across different estimation strategies. As expected, results show that, on average, use of 

modern inputs has a positive and statistically significant impact on crop productivity. The 

use of organic fertilizers also significantly increases the value of the harvest per acre and 

this result is consistent for both estimation strategies. However the use of crop residues 

does not seem to increase crop productivity – the coefficient is not statistically significant in 

the case of OLS estimator, but Ivreg2h and CMP estimators report negative and significant 

effect of crop residue use on crop productivity. One possible explanation for the negative 

 
 

 

17
 “The endogeneity test implemented […] is defined as the difference of two Sargan-Hansen 

statistics: one for the equation with the smaller set of instruments, where the suspect regressor(s) 
are treated as endogenous, and one for the equation with the larger set of instruments, where the 
suspect regressors are treated as exogenous” (Baum, et al., 2007) 
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effect of crop residue is that the yield benefit of use of sustainable land management 

practices such as crop residues often accrues slowly over time compared to other 

agricultural practices, such as modern inputs, which tend to have short term returns. The 

evidence is just one piece of the puzzle, and the finding would have to be confirmed 

through other types of studies. We have also not estimated the impact on reducing yield 

variability in the face of variable climate conditions, so the results should be interpreted 

with the caveats in mind.  Our data also didn’t fully capture when crop residue 

incorporation was started and the frequency that it was used so perhaps this can also 

provide an important lesson for design of future survey. 

 

Table 9: Impact on productivity - Log value of harvest- (‘000 CFAF/acre) 

 
OLS 

 
CMP 

 
IVREG2

H  

 
Coef. se Coef. Se Coef. se 

Modern inputs 0.381*** 0.133 0.143*** 0.066 0.103*** 0.027 

Organic fertilizer  0.718*** 0.101 0.458*** 0.160 0.446*** 0.108 

Crop residues  0.119 0.108 -0.456** 0.242 -0.314* 0.185 

Rainfall during the growing season 
(mm)  

0.635*** 0.393 0.837** 0.387 1.579*** 0.397 

Household reports delayed onset of the 
rainy season in 2011 

-0.474*** 0.109 -0.421*** 0.102 -0.506*** 0.111 

Female farm -0.730*** 0.160 -0.462** 0.226 -0.672*** 0.163 

Log (age)  -0.388** 0.180 -0.296 0.239 -0.421** 0.182 

Log (household size) -0.239 0.179 -0.211 0.230 -0.212 0.180 

Sex ratio -0.012 0.052 0.083 0.075 0.002 0.053 

Dependency ratio -0.017 0.064 -0.044 0.089 -0.033 0.065 

Log (highest education in the hh) 0.027 0.048 -0.039 0.065 0.003 0.049 

Silty soil (reference: sand soil) 0.060 0.224 0.499* 0.301 0.079 0.228 

Clay soil -0.288 0.187 -0.195 0.219 -0.205 0.188 

Rocky soil -0.646*** 0.176 -0.530** 0.225 -0.604*** 0.180 

Topography – hill (reference: flat) 0.526** 0.223 0.067 0.291 0.504** 0.227 

Topography – gentle slope -0.213 0.150 -0.045 0.202 -0.151 0.155 

Topography – steep slope  -0.424* 0.244 -0.025 0.310 -0.349 0.245 

Topography – valley -0.019 0.159 0.257 0.215 -0.035 0.159 

Nutrient availability constraint- (1-4 
scale, 5 = mainly non-soil) 

-0.238** 0.103 -0.454*** 0.139 -0.232** 0.105 

The hh owns the plot 0.687*** 0.157 1.043*** 0.191 0.654*** 0.162 

Log (total land area per hh) -0.810*** 0.088 -0.733*** 0.115 -0.773*** 0.090 

Number of plot owned by the hh -0.060 0.048 -0.019 0.056 -0.044 0.047 

Plot cultivated during the dry season 0.143 0.179 -0.107 0.234 0.042 0.185 

At least one cooperative exist in the 
community 

0.318** 0.147 -0.152 0.194 0.294* 0.150 

Distance from the nearest permanent or 
periodic market 

0.096*** 0.034 0.056 0.049 0.086** 0.034 

Distance from the nearest Agric 
Extension Office 

-0.007 0.037 0.017 0.048 -0.004 0.037 

Distance to dwelling  -0.203*** 0.075 -0.131 0.098 -0.128 0.082 

Log (road density- length in m in a 10 
km radius) 

0.052* 0.028 0.098*** 0.037 0.064** 0.029 
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Wealth Index  0.320 0.435 -0.563 0.587 -0.088 0.455 

Index on Agricultural implements   0.173** 0.078 0.048 0.092 0.140* 0.078 

Livestock size - in TLU 0.298*** 0.101 0.228* 0.136 0.288*** 0.102 

Regional fixed effect YES 
 

YES 
 

YES 
 

Constant 0.642 2.536 4.327* 2.590 0.657 2.555 

N 5340 5340 5340 

R2 0.153 
 

0.137 

Log-Likelihood -15,041.40 -23,537.85 -15,094.78 

Hansen J statistic 
ᵻ
 

 
1.091 1.195 

Underidentification test 
ᵻ
 

 
22.440** 294.574*** 

Weak identification test 
ᵻ 
   10.495** 13.770*** 

Note:  *** p<0.01, ** p<0.05, * p<0.1 

    ᵻ Test for instruments validity for the CMP have been obtained by ivreg2 

 

As described in the earlier section, agriculture in Niger is largely rain-fed. Thus, crop 

productivity in Nigerien households is strongly correlated with climate variables. This is 

perfectly reflected in our results: the amount of rainfall during the growing season, as 

expected, positively influences productivity of the plot. Furthermore, a late onset of the 

rainy season negatively and significantly affects value of production, consistent with 

findings of Verdin et al. (1999).  

 

Soil characteristics, as expected, also explain plot productivity. Results for the availability 

of soil nutrients are also as expected, having a positive impact on productivity. Being an 

essential factor of production, access to land (both in terms of tenure’s stability and in 

terms of number of plots owned) is a key factor in explaining the differentials in 

productivity. Land tenure status also explains variation in plot productivity. Secure land 

tenure implies better plot management in Niger, which in turn positively influences 

agricultural productivity, confirming the results from Clay et al. (1998). Results also show 

an inverse relation between land size and crop productivity which is consistent with many 

other findings in the literature. The coefficient of land size is negative and highly significant 

in all the specifications. One explanation of inverse farm size productivity is related to 

errors in land measurements. However, contrary to earlier conjectures, Carletto et al. 

(2013) find that the empirical validity of the inverse relationship hypothesis is strengthened, 

not weakened, by the availability of better measures of land size collected using GPS 

devices in Uganda. Given that we also used plot measurements collected using GPS 

devices, our findings are consistent with Carletto et al. (2013). 

 

Gender is a significant variable explaining productivity differences. Crop productivity from 

plots managed by women tends to be significantly lower than their male-managed 

counterparts. Our findings are consistent with many studies that show that productivity on 

plots managed by women are lower than those managed by men, which is often attributed 

to differences in access to productive resources (e.g., Quisumbing et al., 2001; Peterman 

et al., 2011). Moreover, crop productivity tends to decrease with the age of the farmer, 

which is in line with the findings from Tauer (1995) who provides evidence of the lower 

productivity of older farmers.  Households with a larger stock of farming-related assets 

(both tools and livestock, the latter measured in Tropical Livestock Units) are significantly 

more productive (see Table 9 for detailed results). 
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6. Conclusions and policy recommendations 

With this study we aimed not only to understand farmers' incentives and conditioning 

factors that hinder or accelerate use of farming practices with adaptation benefits, but also 

to provide rigorous evidence of its impact on crop productivity and crop net income. This 

study utilizes farm household level data collected in 2011 from a nationally representative 

sample of 4074 households in Niger. We employ a multivariate probit (MVP) technique to 

model simultaneous and interdependent farm practice selection decisions and utilize 

conditional recursive mixed process (CMP) and instrumental variables estimators for the 

casual impact estimation.  

 

Results clearly indicate that while the use of modern inputs and organic fertilizers 

significantly improves crop outcomes, the yield impact of using crop residues is not 

statistically significant, which might be a consequence of the fact that the yield benefits of 

some SLM practices such as crop residues often accrue slowly over time compared to 

other agricultural practices, like modern inputs, which in turn tend to have short term 

returns. It is however important to note that we have not addressed in this paper the 

impact of the use of these practices on reducing yield (or income) variability in the face of 

variable climate conditions. Increasing productivity is just one of the reasons to use these 

technologies, but reducing downside loss can be another reason. Therefore the results 

should be interpreted with this caveat in mind.  

 

In order to understand why adoption rates of practices that are effective adaptation 

strategies are low, we performed a multivariate probit analysis. What emerges clearly from 

the analysis is that farmers’ decision to adopt practices that could provide them with 

adaptation benefits varies with climatic stress and agro-ecological conditions, bio-physical 

sensitivity to such disruptions, and the nature of the adaptive capacity required. 

Determinants of adaptive capacity that limit farmers’ options occur at both the household 

and the community level. For instance we find that use of crop residue is higher in areas of 

greater climate variability, as represented by the coefficient of variation of rainfall and 

temperature as well as rainfall shocks measured by average rainfall shortfall increases. 

These practices have low investments but higher labour requirements, and involve longer 

periods to realize benefits. In contrast, modern input use is higher in areas of lower climatic 

variability, and its adoption is affected by proximity to extension services and markets. It’s 

however important to point out that many of the determinants of adoption of crop residues 

and organic fertilizer have different signs e.g. climate variability. This defies the notion that 

organic fertilizer and crop residue as similar technologies (risk reducing inputs) that 

contrary with use of modern inputs. 

 

Overall these analyses generate three important findings relevant for the emerging body of 

literature: 1) climate change related effects are important determinants of the practices 

farmers select, but these effects are quite heterogeneous across agro-ecologies and thus 

the distribution of practices selected; 2) farm practice selection is an important means of 

adaptation that farmers are already practicing as demonstrated by the effects across a 

range of practices, exposure and sensitivity to climate change; and 3) both household and 

community level factors are important determinants of adaptive capacity.  
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Some key lessons emerge from this study for policy makers and institutions. First of all, 

measures to guarantee access to land and stable land tenure are particularly needed for 

the use of long-term strategies to restore soil fertility. Given the strong role of extension in 

adaptive capacity found in this study, the support provided by AEO should be strengthened 

and improved where already in place and expanded to include a larger share of farmers. 

As some of the practices analyzed require high up-front costs which often constitute a 

severe constraint, access to credit should be guaranteed in order to make climate-smart 

farming practices affordable for even the poorest of farmers. Most importantly, the results 

in this paper provide very strong arguments for better targeting agricultural practices to 

respond to climate risk exposure and sensitivity, and then building adaptive capacity to 

support different interventions. Overall this paper argues for much greater awareness of 

heterogeneity in the exposure to climate risk and sensitivity and the implications for which 

agricultural practices will lead to improved productivity, as well as the types of interventions 

and who they should be targeted to in order to improve adaptive capacity. 
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