REPORT BACKGROUND

- Human-induced climate change is already modifying patterns of extreme weather such as flooding, cyclones and drought. In many cases, it is making these hazards more intense, more frequent, less predictable and/or longer lasting. This magnifies the risk of disasters everywhere, but especially in those parts of the world where there are already high levels of human vulnerability.

- As a result, OCHA's Policy Development and Studies Branch and CARE's Poverty, Environment and Climate Change Centre commissioned a research project to compare how current high-risk areas for humanitarian disasters might be affected by climate change over the next 20-30 years.

- Using a Geographical Information Systems (GIS) mapping approach, the team looked at specific hazards associated with climate change - specifically: floods, cyclones and droughts – and placed them in relation to factors influencing human vulnerability. The results identify hotspots of high humanitarian risk under changing climatic conditions.

The complexity of climate change science and measurements of human vulnerability means the results should be interpreted as indicative only. Further research and refinement is necessary, particularly at the regional and local levels.

GROWING VULNERABILITY

- Over the next 20-30 years, the intensity, frequency, duration and extent of weather-related hazards will increase in many parts of the world. However, we are unlikely to see significant changes in the location of these hazards.

- Humanitarian disasters occur as a result of people's exposure to particular hazards and their degree of vulnerability. Vulnerability can be viewed as the capacity of individuals, communities and societies to cope with the impact of hazards without suffering a long-term, potentially irreversible loss of wellbeing and stability. The degree of vulnerability is determined by underlying natural, human, social, physical and financial factors and is a major reason why poor people – especially those in marginalised social groups like women, children, the elderly and disabled – are most affected by disasters.

- By exposing people to more intense hazards, climate change is increasing the risk of humanitarian disasters, particularly in areas where people are already vulnerable.

- Even small changes in climate can significantly increase future disaster risk in highly vulnerable, ill-prepared communities. The day-to-day impacts of climate change also amplify existing stresses, and can contribute to the breakdown of livelihood systems, fuelling factors such as chronic hunger, conflict and displacement. Integrating disaster risk reduction into development strategies in highly vulnerable areas break a potentially vicious cycle, in which more intense disasters reinforce vulnerability and make communities more prone to future shocks.

This document is based on research commissioned jointly by the UN Office for the Coordination of Humanitarian Affairs and CARE International. Comments or requests for further information should be directed to Jenta Kirsch-Wood at OCHA (kirsch-wood@un.org) and Dr. Charles Ehrhart at CARE (ehrhart@careclimatechange.org).
For humanitarian actors, the major concern until 2030 are likely to be areas already subject to extreme weather and with high human vulnerability (i.e. areas identified as risk hotspots by this study).

The largest and most important regions of high overall human vulnerability identified by the study are in: Africa, particularly the Sahel, Horn of Africa and Central Africa; Central and South Asia, particularly Iran/Afghanistan/Pakistan/India and the Caspian region; and Southeast Asia, particularly Myanmar, Laos, Cambodia and Indonesia (maps 1 and 2).

Flood-risk hotspots occur in: Africa, including the Sahel, the Horn of Africa, Great Lakes region, Central Africa and Southeast Africa; Central, South and Southeast Asia; and Central America and the western part of South America (maps 3 and 4).

Drought-risk hotspots are mainly located in sub-Saharan Africa; South Asia, particularly Afghanistan, Pakistan and parts of India; and South East Asia, particularly Myanmar, Vietnam and Indonesia (maps 7 and 8).

Cyclone and hurricane risk hotspots include Mozambique and Madagascar, Central America, Bangladesh, parts of India, Vietnam and several other Southeast Asian countries (maps 5 and 6).

Several parts of the world are hotspots for more than one of the three hazard types. These include much of sub-Saharan Africa, especially the east coast, and much of South Asia. Some areas including Southeast Africa and parts of South and Southeast Asia are at risk from all three hazards (map 9). Such locations are warrant particular attention from humanitarian actors.

At the local level, changing weather patterns will also make the distribution of hazards increasingly unpredictable, and increasing the risk that communities not used to coping with hazard events will become disaster victims.

POLICY CONSIDERATIONS

Over the next 20-30 years the increasing intensity of climate hazards in ‘hotspot’ areas is likely to result in a significant increase in humanitarian need. At the community household level, the poorest and most vulnerable social groups will be hardest hit. Climate change will stretch existing humanitarian capacity and provides an additional incentive to increase preparedness for response and to reduce disaster risk. New thinking and practical approaches are needed to overcome these challenges. These include:

Greater investment in disaster risk reduction (DRR): Concentrate on reducing vulnerability rather than just reacting to emergencies. In signing the Hyogo Declaration in 2005, 168 Governments acknowledged that working to reduce disaster risks, especially at the community level, is critical. There needs to be greater investment in DRR now, especially in poor countries that have always been hazard hotspots but are experiencing an increase in extreme weather due to climate change. Reducing disaster risk needs to be factored in to both development and humanitarian planning from the start. For every dollar invested in disaster risk reduction and preparedness, roughly seven dollars are saved in disaster response. 6

Ensuring faster and more appropriate responses to disasters: Climate change will increase the need for humanitarian response. Investing in early warning systems and strengthening response preparedness saves livelihoods as well as lives. Future agreements on how to adapt to climate change need to clearly reflect the importance of disaster risk reduction and preparedness for response. Applying ‘build-back-better’ principles for the recovery process means that disasters need not undermine development or perpetuate people’s vulnerability. If fragile livelihoods are allowed to erode, people are left even more vulnerable to disasters in the future.

Investing in improved hazard and vulnerability analysis and mapping systems to better assess climate change risk: This includes improving climate-monitoring technology in order to improve mapping and improve forecast reliability. This information then needs to be translated into policies to make sure that populations affected by climate change receive adequate support.

Significantly reducing the greenhouse gas emissions that are ultimately responsible for climate change: The international community has until December 2009, at the Conference of Parties to the United Nations Framework Convention on Climate Change (UNFCCC) to agree on a way forward on how to reduce greenhouse gas emissions from energy production, deforestation, transport and industrial processes. If this deadline is not met, the world risks to commit future generations to a very different and much more hazardous world.
1. Maps displayed in the current document were generated by Maplecroft and taken from their original discussion paper, which is available at: http://share.maplecroft.com/OCHA/Final_Reports_pdf/UNOCHA_Climate_Change_Humanitarian_Implications_Summary.pdf. High resolutions images and technical annexes can be downloaded at http://www.careclimatechange.org.

2. Based on climate models as outlined in the 2007 IPCC Fourth Assessment Report as well as historical data from a number of existing risk analysis such as the 2005 World Bank, Natural Disaster Hotspots: A Global Risk Analysis. (See Ch. 3 and 4 of the Technical Annex for details and references on climate models and mapping of hazard risks)

3. Sources on human vulnerability include the UNDP Human Development Index, Uppsala Conflict Data Program, World Bank Development Indices, etc (see Table 1 below as well as Ch. 5 of the Technical Annex for references and discussion on human vulnerability factors).

4. ISDR Definition of Vulnerability, see: ISDR : Terminology

A boy looking at books found outside the remains of Santara Abbas, a school in Santara Barier in Morolgonj, Bangladesh, after Cyclone Sidr. More than 6.7 million people were affected by Cyclone Sidr that reached the Bay of Bengal in Bangladesh on November 15, 2007. CARE and emergency aid groups assisted the thousands of families and orphans that struggle to get clean water and blankets. It is been said that numbers of dead people reached 3500 by the cyclone. ©2007 Peter Caton
Map 1 shows overall human vulnerability based on a combination of natural, human, social, financial and physical factors. Areas shown in darkest blue are likely to be most at risk if exposed to extreme weather, such as floods, cyclones and droughts, or other impacts of climate change. They are also those areas most vulnerable if exposed to other humanitarian hazards – earthquakes for example.
Map 2 shows the overall human vulnerability in South Asia. The map highlights variation in human vulnerability according to the natural, human, social, financial and physical factors considered. For example, the overall higher vulnerability of Myanmar and Afghanistan is partially due to national indicators such as governance and conflict risk. The lower vulnerability in areas along the foothills of the Himalaya and the Indus Valley in Pakistan represent areas where natural vulnerability is lower than surrounding areas because there is more water and fertile land available. The delta region of Bangladesh is an area that is naturally highly exposed to hazard events. However, the overall vulnerability in this region is now recorded as moderate. This is because, through sound investment in preparedness and risk reduction, the governments and communities have been able to successfully reduce their disaster vulnerability.
Map 3: The map shows ‘flood risk hotspots’ based on the interaction of extreme and significant flood hazard and high overall human vulnerability. Also shown are areas with significant or extreme flood hazard but lower human vulnerability and areas where climate models predict an increase in extreme precipitation, as an indicator of possible future increases of flood risk.
Map 4: Humanitarian risk hotspots for flooding in the East Africa region. The map shows 'flood risk hotspots' based on the interaction of extreme and significant flood hazard and high overall human vulnerability. Also shown are areas with significant or extreme flood hazard but lower human vulnerability and areas where climate models predict an increase in extreme precipitation, as an indicator of possible future increases of flood risk. NB: As with most of the maps, this one has many “blank” squares. These are areas where gaps in vulnerability parameter datasets prevented sufficient mapping. Further details on the limitations and datasets can be found in Ch 1 of the Technical Annex of the original discussion paper.
Hotspots for Cyclones

Map 5: This map shows ‘cyclone risk hotspots’ based on the interaction of extreme and significant cyclone hazard and high overall human vulnerability. Also shown are areas with significant or extreme cyclone hazard but lower human vulnerability. Projections from climate models were not used to identify cyclone risk hotspots because the effect of climate change on future cyclone distribution is very uncertain.
South Asia Floods, Aug. 2004. Dhaka Bangladesh DMP Project; Water levels have now receded throughout the region but meteorologists are predicting more rains to come before wet season is finished. Devastation in Nepal, India and Bangladesh, have left millions homeless, damaged vast amounts of agriculture, destroyed infrastructure and impoverished millions more. © 2004 Josh Estey/CARE
Map 6: The map shows ‘cyclone risk hotspots’ based on the interaction of extreme and significant cyclone hazard and high overall human vulnerability. Also shown are areas with significant or extreme cyclone hazard but lower human vulnerability. Projections from climate models were not used to identify cyclone risk hotspots because the effect of climate change on future cyclone distribution is very uncertain.
Map 7: Humanitarian risk hotspots for drought. The map shows 'drought risk hotspots' based on the interaction of extreme and significant drought hazard and high overall human vulnerability. Also shown are areas with significant or extreme drought hazard but lower human vulnerability and areas where climate models predict an increase in dry periods, as an indicator of possible future increases of drought risk.
Humanitarian Risk Hotspots for Drought, Sub-Saharan Africa

Map 8: The map shows ‘drought risk hotspots’ based on the interaction of extreme and significant drought hazard and high overall human vulnerability. Also shown are areas with significant or extreme drought hazard but lower human vulnerability and areas where climate models predict an increase in dry periods, as an indicator of possible future increases of drought risk.
A cattle herder with his son with what remains of their herd. A severe drought has devastatingly impacted the livelihoods of thousands of pastoralists, who rely on rainfall and grazing, in northeastern Kenya and southern Somalia. © 2006 Kate Holt
Humanitarian risk hotspots for the three major climate-related hazards studied — flood, cyclones and drought. Risk hotspots are defined as areas where high human vulnerability coincides with the distribution of weather-related hazards. The risk hotspots are shown as transparent layers to show where they overlap.
Map 10: Map showing hotspots of humanitarian risk for floods, cyclones and drought (combined) overlaying a population density gradient. Blue areas with striped overlay represent areas of high population density that are also risk hotspots. These areas could be interpreted to be at higher risk of future population displacement as a result of climate hazards.
Drought, East Africa

Displacement in Somali
Map 11: Blue areas with striped overlay represent areas of predicted population density increases that are also risk hotspots. These areas could present increased humanitarian risks in the future as more people become exposed to climate hazards.
Map 12: The base map shows an index of conflict risk. The striped areas of the map represent areas where drought risk hotspots coincide with high and extreme conflict risk. These areas are interpreted to be at relatively higher risk of climate-risk conflict. However, over the timeframe of this analysis the risk of additional humanitarian response being required as a result of climate change induced conflict is not considered much higher than from conflict in general and is very uncertain.
Sources Used in This Study

Table 1: Climate trends, associated hazards and vulnerability factors considered in the study.

<table>
<thead>
<tr>
<th>GROUP</th>
<th>THEME</th>
<th>GIS LAYER</th>
<th>FUTURE</th>
<th>SOURCE(S) SCENARIOS</th>
<th>YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>GROUP 1 HAZARDS</td>
<td>Projected trends</td>
<td>Temperature trends Areas projected to temperature increase</td>
<td>yes</td>
<td>IPCC, WBGU, MPI</td>
<td>Various</td>
</tr>
<tr>
<td></td>
<td>Precipitation trends</td>
<td>Areas projected to undergo change in precipitation</td>
<td>yes</td>
<td>IPCC, WBGU, MPI</td>
<td>2080-2099</td>
</tr>
<tr>
<td></td>
<td>Current climate hazards</td>
<td>Hoods Distribution of flood mortality risk</td>
<td>qualitative</td>
<td>World Bank (sourced from UNEP), EM-DAT, MPI, IPCC</td>
<td>2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Change in extreme precipitation</td>
<td></td>
<td>EM-DAT, IPCC, WBGU, MPI, MPI</td>
<td>2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tropical cyclones Distribution of cyclone mortality risk</td>
<td>qualitative</td>
<td>World Bank (sourced from UNEP), EM-DAT, IPCC, MPI</td>
<td>2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Distribution of tropical storm tracks</td>
<td></td>
<td>IPCC, WBGU, MPI</td>
<td>2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Drought Distribution of drought mortality risk</td>
<td>qualitative</td>
<td>World Bank (sourced from UNEP), EM-DAT, Hadley Centre, IPCC</td>
<td>2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Change in maximum dry periods Future dynamics of drought risk</td>
<td>yes</td>
<td>IPCC, MPI, Hadley Centre</td>
<td>2041-2070</td>
</tr>
<tr>
<td>GROUP 2 VULNERABILITY</td>
<td>Natural</td>
<td>Water availability Distribution of water stress</td>
<td>qualitative</td>
<td>WWDRIT, IPCC AR4, FAO, Alcamo</td>
<td>2007</td>
</tr>
<tr>
<td></td>
<td>Agricultural suitability</td>
<td>Agricultural suitability for combination of staple crops</td>
<td>no</td>
<td>FAO GAEZ, GLC 2000, IPCC WGII</td>
<td>2000</td>
</tr>
<tr>
<td></td>
<td>Land degradation</td>
<td>Distribution of soil degradation</td>
<td>no</td>
<td>ISRICI</td>
<td>2005</td>
</tr>
<tr>
<td></td>
<td>Human</td>
<td>Poverty Distribution of child malnutrition</td>
<td>no</td>
<td>CIESIN</td>
<td>2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Human development index</td>
<td>no</td>
<td>UNDP</td>
<td>2008</td>
</tr>
<tr>
<td></td>
<td>Health</td>
<td>National index for HIV, TB, malaria, malnutrition</td>
<td>no</td>
<td>WHO, UNAIDS, Maplecroft</td>
<td>2007</td>
</tr>
<tr>
<td></td>
<td>Social</td>
<td>Governance National index</td>
<td>no</td>
<td>World Bank, OCHA Global Focus Model</td>
<td>2007</td>
</tr>
<tr>
<td></td>
<td>Conflict risk</td>
<td>National index</td>
<td>forward looking</td>
<td>TCE, Uppsala University, Maplecroft</td>
<td>2007</td>
</tr>
<tr>
<td></td>
<td>Displacement</td>
<td>National index</td>
<td>no</td>
<td>UNHCR, Maplecroft</td>
<td>2007</td>
</tr>
<tr>
<td></td>
<td>Physical</td>
<td>Road infrastructure Market accessibility</td>
<td>no</td>
<td>VMAP0 Digital Chart of the World</td>
<td>1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Road coverage National index</td>
<td>no</td>
<td>TRF</td>
<td>2000-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Telecommunication National index</td>
<td>no</td>
<td>World Bank Development Indicators (WDI)</td>
<td>2007</td>
</tr>
</tbody>
</table>

Analysis

HUMAN VULNERABILITY

FLOOD AND CYCLONE DISASTERS

FOOD AND WATER

POPULATION, DISPLACEMENT AND CONFLICT

Table 1: Climate trends, associated hazards and vulnerability factors considered in the study.